
1©2016 Open-NFP

eBPF Offload to Hardware
cls_BPF and XDP

Nic Viljoen, DXDD (Based on Netdev 1.2 talk)
November 10th 2016

2©2016 Open-NFP

What is eBPF?

 A “universal in-kernel virtual machine”
▪ 10 64-bit registers
▪ 512 byte stack
▪ Infinite size maps
▪ Well defined bytecode

 Stable, in-kernel JIT compiler

▪ X86, ARM64, PowerPC etc…

 LLVM backend means that there is well optimised compiler support to produce bytecode (from C),

tools exist for GO, P4 and others

 eBPF allows backwards jumps if it is ensured that infinite loops are not present (this is checked by

the bpf verifier)

 In kernel helper functions ensure that any required additional functionality is present

▪ E.g working with cgroups

3©2016 Open-NFP

eBPF within the networking stack (XDP/TC)

user space

kernel space

tc

driver

TC
cls_bpf

RX path TX
 pathXDP

XDP
ctrl

Netfilter

OVS
Datapath

netfilter vSwitchD

skb

alloc_skb()

netif_recieve_skb_core()

4©2016 Open-NFP

Motivation: Avoiding Whack-a-mole

 Fully programmable hardware could
do anything:

▪ However fully custom code for
custom purposes is not scalable
or sustainable

▪ Offloading kernel code
transparently is both

▪ Avoids vendor specific solutions,
ensures flexibility and portability

 Solving the problem of how to do
programmable offloads, rather than
what to offload avoids whack-a-mole

5©2016 Open-NFP

Why eBPF?

 It is a well defined framework

▪ Parameters are well constrained-registers, memory use, instruction
set, helpers etc.

 Implementation is ideal for multi-core architectures

▪ Good for transparent offload to many-core NPU

 Programming method used in XDP and TC

▪ The most likely targets for this type of general networking offload

 Gaining Traction

6©2016 Open-NFP

Target architecture (NFP based SmartNIC)

 A group of fully programmable Flow
Processing Cores (FPCs)

 Arranged into islands containing 12 FPCs

 Combined with specialist islands containing

FPCs + hardware blocks

 In total between 72-120 FPCs

 320KB SRAM memory per island

▪ 64 KB CLS-Cluster Local Scratch
▪ 256 KB CTM-Cluster Target Memory

 8 MB of SRAM per NIC

 2 GB of DRAM per NIC

7©2016 Open-NFP

Flow of eBPF Packet

8©2016 Open-NFP

The Flow Processing Core (Fully Programmable)

 Each FPC has the ability to run 4 or 8
cooperatively multiplexed threads

 128 32bit A registers and 128 32bit B registers

▪ A bank registers can only interact with B
bank registers

 256 32-bit transfer registers

 128 32-bit next neighbour registers

 All of these registers are divided between the 4
or 8 contexts

▪ so 8 context leads to 16 A registers, 16 B
registers etc. per thread

 8k of instructions per FPC

 12 KB of SRAM per FPC

9©2016 Open-NFP

Mapping eBPF->NFP

10©2016 Open-NFP

Programming Model

 Program is written in standard
manner

 LLVM Compiled as normal

 Then the nfp_bpf_jit.c converts the
eBPF bytecode to NFP machine code

 Translation reuses a significant
amount of verifier infrastructure

▪ This has motivated recent
actions such as the creation of
bpf_verifier.h

11©2016 Open-NFP

Kernel basics (before)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

fd

verification

fd

driver

RX TXXDP

BPF
prog

12©2016 Open-NFP

Kernel basics (flow no offload)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

fd fd

driver

RX TXXDP

BPF
prog

s
k
b

verification

13©2016 Open-NFP

Kernel basics (after)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags

verification

fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

14©2016 Open-NFP

Kernel basics (after)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

verification

15©2016 Open-NFP

Kernel basics (flow with offload)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

fallback

stats

metadata

verification

16©2016 Open-NFP

Translation and loading

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

verification

(1) Check HW capabilities and image parameters

17©2016 Open-NFP

Translation and loading

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

(2) Re-run the verifier

verification

(1) Check HW capabilities and image parameters

18©2016 Open-NFP

Translation and loading

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

(1) Check HW capabilities and image parameters

(2) Re-run the verifier

(3) Collect state/analyze

verification

19©2016 Open-NFP

Translation and loading

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

offload
object

fd, skip_* flags fd, skip_* flags

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

BPF
prog

(2) Re-run the verifier

(3) Collect state/analyze

(4) Optimize
(5) JIT/generate image
(6) Load image

verification

(1) Check HW capabilities and image parameters

20©2016 Open-NFP

Quick peek at the device path

device

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

kernel space

core core core core core core core

Memory

stats

maps
Data path

core

packet data m

descriptor
ring

bits in descriptors
metadata in

prepend

MAC0 MAC1 MAC2 MAC3

21©2016 Open-NFP

Operations and actions (done or near term)

device

driver

RX TXXDP
ndo

setup
tc

HW JIT /
translator

stats
&

maps

kernel space

core core core core core core core

Memory

stats

maps

core

packet data m

descriptor
ring

bits in descriptors
metadata in

prepend

MAC0 MAC1 MAC2 MAC3

Data Path

● ALU instructions except
multiply and divide

● Packet Modification
(header or payload)

● Basic maps
● Operations on relevant

packet metadata fields
● Encapsulation

• Redirection
• Drop
• Pass (with modification

and metadata)

22©2016 Open-NFP

Map plans and ideas

Use of map by offloaded
program Map location Mechanism needed

Read only Host + device copy update interception

Read/write Device only update/read interception
lock out map in kernel space

Read + statistics gather update/read interception

● use verifier to check access types;
● add hooks in map code;
● add netdevice for binding the map to the device;
● read + statistics require further investigation;
● only allow read/write offload for skip-sw programs.

23©2016 Open-NFP

Optimizations and verifier work

 32 bit state tracking (in kernel or LLVM machine type?).
 Instruction merging (3-operand assembler, shift/mask/alu instructions).

 Better register allocation-liveness analysis.
 Clever placement/caching of registers and data (maps).

▪ Island SRAM access accessed in 20 cycles whereas DRAM is 150-500 (though hidden
by multithreading)

24©2016 Open-NFP

Demo

Links to eBPF Webinar
Start of Webinar: https://www.youtube.com/watch?v=apU5sg0Ui5U

Start of Demo: https://youtu.be/apU5sg0Ui5U?t=2003
Also Check out: http://open-nfp.org/the-classroom/

https://www.youtube.com/watch?v=apU5sg0Ui5U
https://youtu.be/apU5sg0Ui5U?t=2003
http://open-nfp.org/the-classroom/

25©2016 Open-NFP

Summary

 cls_bpf and XDP are fast and efficient classifiers

 However as time goes on, efficient use of CPU will become more
important as networking workloads scale relative to CPU

 To ensure that networking is able to cope without exponential
increases in CPU usage requires the implementation of an efficient
and transparent general offload infrastructure in the kernel

 We believe this work is a step in the right direction

26©2016 Open-NFP

Questions?
Thank You

