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What is eBPF?

 A “universal in-kernel virtual machine”
▪ 10 64-bit registers
▪ 512 byte stack
▪ Infinite size maps
▪ Well defined bytecode

 
 Stable, in-kernel JIT compiler 

▪ X86, ARM64, PowerPC etc…
 
 LLVM backend means that there is well optimised compiler support to produce bytecode (from C), 

tools exist for GO, P4 and others
 
 eBPF allows backwards jumps if it is ensured that infinite loops are not present (this is checked by 

the bpf verifier)
 
 In kernel helper functions ensure that any required additional functionality is present

▪ E.g working with cgroups
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eBPF within the networking stack (XDP/TC)
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Motivation: Avoiding Whack-a-mole

 Fully programmable hardware could 
do anything:

▪ However fully custom code for 
custom purposes is not scalable 
or sustainable

▪ Offloading kernel code 
transparently is both

▪ Avoids vendor specific solutions, 
ensures flexibility and portability

 Solving the problem of how to do 
programmable offloads, rather than 
what to offload avoids whack-a-mole
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Why eBPF?

 It is a well defined framework

▪ Parameters are well constrained-registers, memory use, instruction 
set, helpers etc.

 Implementation is ideal for multi-core architectures

▪ Good for transparent offload to many-core NPU

 Programming method used in XDP and TC 

▪ The most likely targets for this type of general networking offload

 Gaining Traction
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Target architecture (NFP based SmartNIC)

 A group of fully programmable Flow 
Processing Cores (FPCs)

 
 Arranged into islands containing 12 FPCs 
 
 Combined with specialist islands containing 

FPCs + hardware blocks
 
 In total between 72-120 FPCs
  
 320KB SRAM memory per island 

▪ 64 KB CLS-Cluster Local Scratch
▪ 256 KB CTM-Cluster Target Memory

 
 8 MB of SRAM per NIC
 
 2 GB of DRAM per NIC
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Flow of eBPF Packet
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The Flow Processing Core (Fully Programmable)

 Each FPC has the ability to run 4 or 8 
cooperatively multiplexed threads

 128 32bit A registers and 128 32bit B registers

▪ A bank registers can only interact with B 
bank registers

 256 32-bit transfer registers

 128 32-bit next neighbour registers

 All of these registers are divided between the 4 
or 8 contexts

▪ so 8 context leads to 16 A registers, 16 B 
registers etc. per thread 

 8k of instructions per FPC

 12 KB of SRAM per FPC
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Mapping eBPF->NFP
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Programming Model

 Program is written in standard 
manner

 LLVM Compiled as normal

 Then the nfp_bpf_jit.c converts the 
eBPF bytecode to NFP machine code

 Translation reuses a significant 
amount of verifier infrastructure

▪ This has motivated recent 
actions such as the creation of 
bpf_verifier.h
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Kernel basics (before)
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Kernel basics (flow no offload)

user space

kernel space
BPF syscall

● program
● type (sk filter, kprobe, cls, xdp)
● license
● ...

verifier

fd

host JIT

tc

TC
cls_bpf

modification

XDP
ctrl

fd fd

driver

RX TXXDP

BPF
prog

s
k
b

verification



13©2016 Open-NFP

Kernel basics (after)
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Kernel basics (after)
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Kernel basics (flow with offload)
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Translation and loading
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Translation and loading
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Translation and loading
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Translation and loading
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Quick peek at the device path
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Operations and actions (done or near term)
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● ALU instructions except 
multiply and divide
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• Redirection
• Drop
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Map plans and ideas

Use of map by offloaded 
program Map location Mechanism needed

Read only Host + device copy update interception

Read/write Device only update/read interception
lock out map in kernel space

Read + statistics gather update/read interception

● use verifier to check access types;
● add hooks in map code;
● add netdevice for binding the map to the device;
● read + statistics require further investigation;
● only allow read/write offload for skip-sw programs.
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Optimizations and verifier work

 32 bit state tracking (in kernel or LLVM machine type?).
 Instruction merging (3-operand assembler, shift/mask/alu instructions).

 Better register allocation-liveness analysis.
 Clever placement/caching of registers and data (maps).

▪ Island SRAM access accessed in 20 cycles whereas DRAM is 150-500 (though hidden 
by multithreading)
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Demo

Links to eBPF Webinar
Start of Webinar: https://www.youtube.com/watch?v=apU5sg0Ui5U 

Start of Demo: https://youtu.be/apU5sg0Ui5U?t=2003 
Also Check out:  http://open-nfp.org/the-classroom/ 

https://www.youtube.com/watch?v=apU5sg0Ui5U
https://youtu.be/apU5sg0Ui5U?t=2003
http://open-nfp.org/the-classroom/
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Summary

 cls_bpf and XDP are fast and efficient classifiers 

 However as time goes on, efficient use of CPU will become more 
important as networking workloads scale relative to CPU

 To ensure that networking is able to cope without exponential 
increases in CPU usage requires the implementation of an efficient 
and transparent general offload infrastructure in the kernel

 We believe this work is a step in the right direction
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Questions?
Thank You


