— Open-NFP Summer Webinar Series:
Session 4: P4, EBPF And Linux TC Offload

Dinan Gunawardena & Jakub Kicinski -
Netronome

August 24, 2016

Open-NFP www.open-nfp.org (&) OpennFP

Support and grow reusable research in accelerating dataplane network functions processing
Reduce/eliminate the cost and technology barriers to research in this space

 Technologies:
— P4, eBPF, SDN, OpenFlow, Open vSwitch (OVS) offload

 Tools:
— Discounted hardware, development tools, software, cloud access
 Community:

— Website (www.open-nfp.org): learning & training materials, active Google group
https://groups.google.com/d/forum/open-nfp, open project descriptions, code repository

 Learning/Education/Research support:

— Summer seminar series, P4DevCon conference, Tutorials (P4 Developer Day), research proposal support
for proposals to the NSF, state agencies

Summer seminar series to further progress to our objective. Present applied reusable research.

©2016 Open-NFP 2

P4DevCon Attendees/Open-NFP Projects® () opennrp

Universities Companies
\

A\ THE UNIVERSITY Carnegie Mellon University &, =t BAREFCO:T
. OF ARIZONA. 7 W i at&t == 1C NETWORKS
) g +HH

JOHNS HOPKINS

o L | (1 DAV I S R UNIVERSITY OF CALIFORNIA APPLIED PHYSICS LABORATORY -a . .6
s s o\ Al IVERSIDE
m UNIVERSITY OF CALIFORNIA
2 I amm O BeII
. (o g
(University of 1 INTERNATIONAL
della o Massachusetts | COMPUTER SCIENCE

vizzera UMASS [owell ‘ 1 INSTITUTE
o o UNIVERSITA DI PISA ﬁ@ sré HUAWEI JUﬂ"Der

A 225 USC University of
U QA M Southe?xiv(ejr;igo(;nia L EVT = l | irQ* @ NTT
O ISI m Microsoft _ 1 noir@
N *

Information Sciences Insfitute

=
>

ERICSSON

Universita

‘ .
~ \— ‘. Qg PLUMQgrid n OSMOS
UNIVERSITY OF «a) TELAVIV NO'01IIN ; O N,LAB Q A Q)DIVIUS
CAMBRIDGE UNICAMBP UNIVERSITY AN W}
W UNIVERSITY of WASHINGTON — WISCONSIN ‘ redhat ts’y nic
~ Fraunhofer

TECHNISCHE FOKUS

UNIVERSITAT
DARMSTADT

*This does not imply that these organizations endorse Open-NFP or Netronome

UNIVERSITY OF MISSOURI
KANSAS CITY

o @
AL SULPI)
NPy (#)\
3 RGNy o
v) ¢
S "‘L\" o o ™
Al | ~ 7,
[2 |-\»::'.
| [~ \ 74
| Ly 4
[| G - 51 &1%|
) 5 <= |- '
‘l & / = | &a '
| B 3 | =3 |~
\ \ \\ [£ y. q |
L&m v 3
< y)
S g
1
|
~— -

©2016 Open-NFP

3

Session Agenda

1. Introduction

Objectives
2. Overview: The high level model for offload

- What we are offloading — P4 / eBPF

— Overall programmer model for transparent
offload

3. Linux Kernel Infrastructure
The Traffic Classifier (TC)
eXpress Data Path (XDP)
Current eBPF translation on X86/ARM64/PPC64

©2016 Open-NFP

4. Hardware Intro to NFP (Network Flow
Processor) architecture

SmartNICs-Multi Core, Many Core
NUMA, Memory Hierarchy

5. Accelerating P4/eBPF in NFP :
Implementation
Kernel core infrastructure
Map handling in the kernel
Translating instructions
Basic Map Support

Optimizations

6. & 7. Demo; Summary

——> Session Objectives

Introduction: Objectives (&) OpennFP

Understanding how eBPF Is relevant to P4
Understanding the support for offload and state of art in the Linux Kernel

The Code

Understand the structure of a eBPF program

Gain an insight into how this is translated and executed in hardware

Understanding how the NFP architecture on the Agilio CX enables high
performing, fully programmable network offload

The Many Core architecture and its advantages

©2016 Open-NFP 6

———> Overview: High level model for offload

* What we are offloading — P4 / eBPF

* QOverall programmer model for
transparent offload

P4 and eBPF

What are P4 and eBPF?

Domain specific languages for specitying forwarding
behaviour of the data plane of network components

P4 - Programming Protocol-Independent Packet
Processors

 Header format description

» Parse Graphs (FSM)

* Tables (<keys,actions>)

» Actions manipulate packet header/metadata

* Control flow — an imperative program, describing
sequence of data dependent match/actions

©2016 Open-NFP

eBPF — Extended Berkley Packet Filters

Low level (machine code like) language

Code executed by a VM (restricted memory, no
sleeps/locks, limited APl to kernel)in the Kernel (TC)

Code injected into netfilter hook points in kernel data
plane

Maps (<key, value> stores)
Chained filter functions
Match/action

Static verification of safety, guaranteed to terminate

Translating P4->eBPF

John Fastabend P4 to eBPF compiler
Why translate P4 to eBPF?

P4 Construct C Translation

header_type struct type

header struct instance with an additional valid bit

metadata struct instance

parser state code block

state transition = goto statement

extract load/shift/mask data from packet buffer

P4 Construct C Translation
table 2 EBPF tables: second one used just for the default action
table key struct type

table actions block tagged union with all possible actions

action arguments struct

table reads EBPF table access

action body code block

table apply switch statement

counters additional EBPF table

P4

--=>

Access kernel
data structures

| P4-to-EBPF | ---> C ----> | BCC | --> EBPF

Complex actions Parser loops

Learning

Packet editing

Packet filtering
Simple forwardin

R/W tables
from kernel

Ternary tables

Tracing

Scope of current compiler 9

Model for Transparent Offload (&) OpennFP

Programmer / user is “unaware” that eBPF code is “offloaded”
Requirements

» Partial pipeline offload

» Fallback to software for any eBPF code block

* Transparent user mode / kernel mode access to tables

I
I eBPF

Program 3

Program 1 Program 2
(HW offload) (HW offload) I

PCI-E c-rossing

Packet
In

©2016 Open-NFP

—=> Linux Kernel Infrastucture

* The Traffic Classifier (TC)
» eXpress Data Path (XDP)

Linux Traffic Classifier (TC)

Shaping The class offers shaping capabilities

Scheduling A qdisc acts as a scheduler e.g. FIFO

Classifying The filter performs classification through a classifier
object.

Policing A policer performs policing within a filter

Dropping The “drop” action occurs with a filter+policer

Marking The dsmark gdisc is used for marking

Local IP
program X ook I Forwarding
etc

l

Netfilte
Nook

e IP Forwarding
-) Ingress » — -b Bridging
Port — etc

©2016 Open-NFP

A Simple Program

< Reclassify
No 8302.1q7 Yes

PoP
VLAN

10.0.0.21/327

No%
No 10.0.0.0/247

\/

Yes Hl DROP I

’l set I
Yes
qQqueuse__map

J

No

pipe
Egress Traffic
Traffic = Control >t Egress =)
Control Scheduling Port

12

eXpress Data Path (XDP)

What

* High performance,
programmable network
data path

Utility

» Useful for packet processing
» forwarding

* load balancing

 DOS mitigation

* firewalls, efc.

©2016 Open-NFP

Load/configure BPF .
Application I : Application
I -
----T -------------- h----.-—-- - .
| _ I .
Sockets Packet steering ; : Sockets
|
TCP/IP stack Receive local ,' —J TCP/P stack
1 |
Drop / t ' | Forward
52 '
GRO ' p
Parsing/processing
BPF Program
XDP Packet
Processor {
L J ' L
Driver/device

13

— Hardware Intro to NFP (Network Flow
Processor) architecture

 NUMA, Memory Hierarchy

 Current eBPF translation on X86/ARM64/
PPC064

NUMA, Memory Hierarchy (&) OpennFP

' = 7 =1
:N MACJ A f | Se as |Ix7 _
K <,‘:> A Hewe ||| seneral
aagdoa purpose
J ddaaoad v XC]
=Pl % J 2568 ; special L
CT™] < purpose
-
- U | = ! !] '
EMAC | / i wem 4 | EMEMO _j =
* x2 | aMB . /!
Pl Tos g | 3MB —
— L . L + EXTERNAL
rlsLand - : DRAM
ME ME CTM
S
Code Code |{¢°° %ﬁggﬁr | Architecural Philosopies:
Data Data Memary Bring the data close to where it needs to be processed

» Mitigate branch costs and hide I/O & memory access
CPP Bus- S}jsjcem latencies

ﬁ ﬁ Tt » Facilitate highly concurrent access to memories
¢ Sgen)

©2016 Open-NF | 15

Current eBPF translation on X86/ARM64/PPC64 GJ OpenNFP

1) Write eBPF program as a simple

C Program

2) Compiled to eBPF byte code

LLVM

3) Loaded into the Linux TC

eBPF.bc

4) Run through verifier
5) Cross compiled to X86/ARM64/PPC64

... Or now NFP Byte Code! Famias _
fon bare NFP hardware
metal x86) offloaded eBPF

©2016 Open-NFP 16

Dataflow)’ OvenNFP

User
- 1
P Stac
rarnie L AassIer Packet + Sk Buf Kernel
Driver (XDP)
PCI-E
Firmware & Hardware . PaCke“;;tge(jS:tr;ptor’ NFP

©2016 Open-NFP Network 17

Supported Actions)’ OpenNFP

Supported Actions

* Drop

 Mark
* Redirect User

2 Stac
AN
rarnie L AassIner Packet + Sk Buf Kernel
Mark Driver (XDP)
. PCI-E
. Packet + Descriptor,

- Firmware & Hardware Meta data NFP

©2016 Open-NFP

3\2 Drop Redirect Network

18

“Accelerating P4/eBPF in NFP
Implementation

>

» Kernel core infrastructure
 Map handling in the kernel
 eBPF to NFP

 Map Support

* Optimizations

Kernel core infrastructure @)’ OpennFp

skip sw | skip hw

User
P Stac
Offload obj FatiCc classiner
Kernel
NFP Offload et Driver (XDP)
Control
PCI-E
Firmware & Hardware NFP

©2016 Open-NFP Network 20

eBPF to NFP G OpenNFP

* Non-linear mapping
» 32 bit translation

eBPF Registers NFP

DRAM

ME Registers

10 x
64Dbits

Translate

—_—>

v

©2016 Open-NFP 21

Map Handling in Kernel & Map Write Reflection

Control User
* \Write interception Application Space

* Ownership

* Associating with a device
Space

Write Reflection —>| :
I I
Read-Only single-user maps : :

Read-Only multi-user maps

Write-Enabled single-user maps

Write-Enabled multi-user maps

©2016 Open-NFP Network 29

Optimizations (S’ OpenNFP
* Dealing with different memory types

* Peephole Optimizer

* Dropping unnecessary jumps
* Optimizing instructions with immediates

* Fusing Instructions
» Full A/B register allocations

» Liveness analysis with real state size tracking

©2016 Open-NFP 23

——> Demo

Summary (5) OpenNFP

» Learnt the relationship between P4 and eBPF

 Discovered the infrastructure in the Linux Kernel for eBPF
offload

o Learnt about how the Netronome Smart NIC architecture is
optimised for network flow processing

» Explored how we implemented the eBPF offload in hardware

©2016 Open-NFP 25

—"> QUESTIONS?

Dinan Gunawardena
dinan.gunawardena@netronome.com

Jakub Kicinski
Jakub.Kicinski@netronome.com

——> THANK YOU

