
Agilio Open vSwitch Offload
User Manual

V23.10

Contents:

1 Introduction ... 1
1.1 Revision History ... 1
1.2 About this Guide... 1
1.3 Audience.. 1
1.4 Contact Us ... 1

2 Abbreviations and Terms .. 2

3 Product Overview .. 5
3.1 Supported Products.. 5
3.2 Safety .. 5
3.3 Standards and Regulations... 6

3.3.1 Environmental Compliance... 6
3.3.2 Regulatory Compliance .. 6

4 The Agilio SmartNIC Architecture... 7

5 Hardware Installation .. 8
5.1 Physical installation .. 8
5.2 Identification ... 8
5.3 Validation ... 9

6 Validating the Driver .. 10
6.1 Confirm Upstreamed NFP Driver .. 10
6.2 Confirm that the NFP Driver is Loaded.. 11

7 Validating the Firmware .. 12

8 Selecting the TC Offload Firmware ... 14
8.1 Verify Firmware is Loaded .. 17

9 SmartNIC Netdev Interfaces.. 18
9.1 Representors.. 18
9.2 Identification ... 18
9.3 Support for biosdevname ... 20

10 PF Link Configuration ... 21
10.1 Settings.. 21

10.1.1 RHEL 7.5+ and CentOS 7.5+ ... 21
10.1.2 Ubuntu ... 22
10.1.3 Upping Physical Port Representors .. 23

10.2 Verification ... 23

11 Install Open vSwitch ... 24

www.corigine.com ii

11.1 Installation From a Recent Distribution.. 24
11.1.1 RHEL ... 24
11.1.2 CentOS.. 24
11.1.3 Ubuntu ... 25
11.1.4 Check OVS Install .. 25

12 Using the Linux Driver .. 26
12.1 Configuring SRIOV.. 26
12.2 Configuring Interface Media Mode .. 27

12.2.1 Configuring Interface Linkspeed .. 27
12.3 Configuring Interface Maximum Transmission Unit (MTU) ... 28
12.4 Configuring FEC modes ... 28
12.5 Setting Interface Breakout Mode... 31
12.6 Confirming Connectivity.. 33

12.6.1 Allocating IP Addresses.. 33
12.6.2 Pinging interfaces... 33

13 Basic Firmware Features .. 34
13.1 Summary of Features ... 34

13.1.1 Flow Based Features ... 35
13.1.2 More Advanced Flows .. 36
13.1.3 Configurations .. 37
13.1.4 Other.. 38

13.2 View Interface Parameters.. 39
13.3 Configuring Interface Settings... 41

13.3.1 Receive Checksum Offload .. 41
13.3.2 Transmit Checksum Offload ... 41
13.3.3 Scatter/Gather.. 42
13.3.4 TCP Segmentation Offload (TSO)... 42
13.3.5 Generic Segmentation Offload (GSO)... 42
13.3.6 Generic Receive Offload (GRO) ... 43

14 Using Open vSwitch .. 44
14.1 Running Open vSwitch ... 44

14.1.1 RHEL and CentOS ... 44
14.1.2 Ubuntu ... 46

14.2 Configuring Open vSwitch Hardware Offload .. 47
14.3 Open vSwitch Hardware Offload Example... 47

15 Using the DPDK Poll Mode Driver... 51
15.1 Install Software... 51

15.1.1 Install DPDK... 51
15.1.2 Environment Variable ... 51
15.1.3 Install PktgenDPDK... 51
15.1.4 Install OVSDPDK .. 52

15.2 Configuration.. 52
15.2.1 Select Flower Firmware.. 52
15.2.2 Configure SRIOV .. 52

www.corigine.com iii

15.2.3 Configure Hugepages... 52
15.3 Example for OVS Hardware Offload.. 53

15.3.1 Configure OVSDPDK .. 53
15.3.2 Configure Flow Rules ... 54
15.3.3 Configure PktgenDPDK... 54
15.3.4 Check Flow Offload .. 55

16 Using the DPDK vDPA ... 56
16.1 Supported Products.. 57
16.2 Software Dependency .. 57
16.3 Software Installation ... 58

16.3.1 Installing QEMU ... 58
16.3.2 Installing DPDK.. 58
16.3.3 Setting Environment Variable and Installing PktgenDPDK, OVSDPDK, Firmware 58

16.4 Software Configuration ... 58
16.4.1 Configuration Sequence ... 58
16.4.2 Loading Flower Firmware and Configuring SRIOV, Hugepages, OVSDPDK,

Flow Rules ... 59
16.4.3 Configuring vDPA Instance ... 59
16.4.4 Configuring VM .. 59

16.5 Configuration Examples.. 60
16.5.1 Configuring the vDPA Instance ... 60
16.5.2 Configuring the VM... 60

17 Appendix A: Corigine Repositories .. 61
17.1 Importing GPGKey .. 61
17.2 Configuring Repositories .. 61

18 Appendix B: Red Hat Repositories ... 62

19 Appendix C: Installing the OutofTree NFP Driver .. 63
19.1 Install Driver via Corigine Repository .. 63

19.1.1 RHEL 8 and CentOS 8 ... 63
19.1.2 Ubuntu ... 64
19.1.3 Kernel Changes ... 64

19.2 Building from Source .. 65
19.2.1 RHEL 8 and CentOS 8 Dependencies .. 65
19.2.2 Ubuntu Dependencies .. 65
19.2.3 Clone, Build and Install ... 65

20 Appendix D: Working with Board Support Package .. 66
20.1 Install Software from Corigine Repository ... 66
20.2 Install Software from DEB/RPM Package.. 66

20.2.1 Obtain Software ... 66
20.2.2 Install the Prerequisite Dependencies ... 67
20.2.3 NFP BSP Package ... 67

20.3 Using BSP Tools... 67
20.3.1 Enable CPP Access ... 67

www.corigine.com iv

20.3.2 Configure Media Settings ... 68

21 Appendix E: Upgrading the Kernel ... 70
21.1 RHEL ... 70
21.2 CentOS .. 70
21.3 Ubuntu ... 70

21.3.1 Acquire packages... 71
21.3.2 Install packages ... 71

22 Appendix F: Updating Kernel Boot Parameters ... 72
22.1 RHEL and CentOS Grub Config ... 72
22.2 Ubuntu Grub Config.. 72

23 Appendix G: Upgrading TC Firmware... 73
23.1 Installing Updated TC Firmware via the Corigine Repository ... 73
23.2 Installing Updated TC Firmware from Package Installations .. 73
23.3 Select Updated TC Firmware.. 74

24 Appendix H: Offloadable Flows .. 75
24.1 Matches ... 75
24.2 Actions ... 76

25 Appendix I: Quality of Service .. 77
25.1 Configuring Quality of Service (QoS) Rate Limiting with OVS.. 77

26 Appendix J: Overlay Tunneling... 79
26.1 Introduction .. 79

26.1.1 Method 1: IPonthePort.. 79
26.1.2 Method 2: IPontheBridge .. 80

26.2 VXLAN Tunnels.. 80
26.3 GENEVE Tunnels... 81
26.4 GRE Tunnels.. 82
26.5 IPv6 on the Underlay .. 82

27 Appendix K: Link Aggregation (LAG) ... 83
27.1 Using Native Open vSwitch LAG .. 83
27.2 Configuring Linux Bond LAGs... 84

27.2.1 Activebackup .. 86
27.2.2 Balancexor.. 86
27.2.3 802.3ad.. 87

27.3 Configuring Linux Teaming ... 87
27.4 Using Linux LAG with Open vSwitch ... 88
27.5 Using Linux LAG with Tunnels .. 89

28 Appendix L: QinQ .. 90
28.1 Configuring QinQ in OVS.. 90

www.corigine.com v

1 Introduction

1.1 Revision History

Revision Date Description

V22.04 29 Apr 2022 Corigine initial public release.

V22.07 30 Jul 2022 Corigine second public release.

V22.10 31 Oct 2022 Corigine third public release.

V23.10 30 Oct 2023 Add Using the DPDK Poll Mode Driver
Add Using the DPDK vDPA
Add GX series NIC

1.2 About this Guide

This is the User Manual for Agilio Open vSwitch Offload and support provided by Corigine to its cus
tomers. The reader can find more elaborated information about the different topics in the links and
references provided throughout the document. Bash scripts are indicated with a light blue background.

1.3 Audience

This document is intended for the installer and user of the SmartNIC.

1.4 Contact Us

Corigine Systems, Inc. 2FWest, Building 1 No. 1516 Hongfeng RoadWuxing Dist., Huzhou Zhejiang,
313000

4006150098

https://www.corigine.com/ smartnicsupport@corigine.com

www.corigine.com 1

https://www.corigine.com/
mailto:smartnic-support@corigine.com

2 Abbreviations and Terms

A list of abbreviations and terms used throughout this guide.

Abbreviation/Term Meaning/Description

BPF Berkeley Packet Filter

BSP Board Support Package

COTS Commercial OffTheShelf

CPP Command Push/Pull

DAC Digital to Analog Converter

DKMS Dynamic Kernel Module Support

EM Element Management

ESD ElectroStatic Discharge

FEC Forward Error Correction

HPET High Precision Event Timer

IEEE Institute of Electrical and Electronics Engineers

IOMMU Input/Output Memory Management Unit

GRE Generic Routing Encapsulation

KVM Kernelbased Virtual Machine

LSO Large Segmentation Offload

MANO Management and Orchestration

MTU Maximum Transmission Unit

<netdev> Network device interface name

<netdev port> Network device physical port

NFP Network Flow Processor

NFV Network Functions Virtualization

NFVI Network Functions Virtualization Infrastructure

NFVO Network Functions Virtualization Orchestrator

continues on next page

www.corigine.com 2

continued from previous page

Abbreviation/Term Meaning/Description

NIC Network Interface Card

NM Network Management

NSD Network Service Descriptor

NUMA Non Uniform Memory Access Architecture

OS Operating System

OOT Out of Tree

OVS Open vSwitch

PCI Peripheral Component Interconnect

PF Physical Functions

PNF Physical Network Functions

PXE Preboot Execute Environment

RAID Redundant Arrays of Independent Disks

RSC Receive Side Coalescing

RSS Receive Side Scaling

SPOF Single Points of Failure

SRIOV Single Root I/O Virtualization

TCP Transmission Control Protocol

TSO TCP Segmentation Offload

UDP User Datagram Protocol

UEFI Unified Extensible Firmware Interface

VDU Virtualization Deployment Unit

VF Virtual Functions

VIM Virtualized Infrastructure Manager

VLAN Virtual Local Area Network

VNF Virtualized Network Functions

VNFC Virtualized Network Functions Component

VNFD Virtualized Network Functions Descriptor

continues on next page

www.corigine.com 3

continued from previous page

Abbreviation/Term Meaning/Description

VNFFG Virtualized Network Functions Forwarding Graph

VNFM Virtualized Network Functions Manager

VXLAN Virtual eXtensible Local Area Network

www.corigine.com 4

3 Product Overview

The Agilio family of SmartNICs provide the performance, functionality and programmability required by
Cloud operators and service providers struggling to meet performance expectations, without consuming
massive CPU cores. The Agilio SmartNICs are available in four options: Agilio CX, Agilio FX, Agilio GX
and Agilio LX (https://www.corigine.com/smartnic.html).

3.1 Supported Products

An Agilio SmartNIC product can support different speed types. The following table shows Agilio Smart
NIC products that are currently supported and their different supported port speeds.

Supported Agilio product Supported port speeds

CX 2x25G 2x10G
2x25G
1x10G + 1x25G

CX 2x25G (v2) 2x10G
2x25G
1x10G + 1x25G

GX 2x10G 2x10G

GX 2x25G 2x10G
2x25G
1x10G + 1x25G

GX 4x10G Each port supports 10G/1G

3.2 Safety

This section contains “Warnings” and “Cautions”. Warnings are safety related. Failure to follow warnings
may lead to injury or equipment damage. Cautions are requirements for proper function. Failure to follow
cautions may result in improper operation. All products are low voltage PCIe cards (12V, 3.3Vsupplied
per PCIe standard). All lasers in optional transceiver plugins are Class 1 or Class 1M. Avoid looking
directly at the laser for more than a few seconds.

Warning: Replacements must be performed by qualified personnel only. All installation instructions
and requirements specified for the enduse system must be followed.

www.corigine.com 5

https://www.corigine.com/smartnic.html

Caution: None of the units in this document are hotswappable. Damage will result. Please
disconnect all system power feeds before attempting to install or replace any of these products in a
system.

Caution: These products may be vulnerable to static electricity. ElectroStatic Discharge (ESD)
mitigation controls (e.g. static straps) must be used while handling and installing these products.
These products should be stored in antistatic bags or containers when not in use.

3.3 Standards and Regulations

The Agilio SmartNICs adhere to the following regulations.

3.3.1 Environmental Compliance

• European Union RoHS II Directive: 2011/65/EU

• European Union REACH Directive: 2006/121/EC

• Administrative Measure on the Control of Pollution Caused by Electronic Information Products
(“China ROHS”)

• Congo Conflict Minerals Act of 2009 (Section 1502 of DoddFrank Wall Street Reform and Con
sumer Protection Act including SEC ruling 17 CFR PARTS 240 and 249b)

3.3.2 Regulatory Compliance

• CFR 47 FCC Part 15 Subpart B Class A emissions requirements (USA)

• European Union EMC Directive: 2004/108/EC

• ICES0003 Issue 4 Class A Digital Apparatus emissions requirements (Canada)

• EN 55022:2010/AC:2011 Class A ITE emissions requirements (EU / CE Mark)

• EN 55024:2010 ITE immunity characteristics (EU / CE Mark)

• EN 6100042

• EN 6100043

• EN 6100044

• EN 6100046

• EN 6100048

• Kylin Software NeoCertify Certification

www.corigine.com 6

4 The Agilio SmartNIC Architecture

The Agilio CX SmartNICs are based on the NFP4000 and are available in low profile PCIe and OCM
v2 NIC form factors suitable for use in Commercial OffTheShelf (COTS) servers. This is a 60 core
processor with eight cooperatively multithreaded threads per core. The flow processing cores have an
instruction set that is optimized for networking. This ensures an unrivaled level of flexibility within the
data plane while maintaining performance. The Open vSwitch (OVS) datapath can also be enabled
without a server reboot.

Further extensions such as Berkeley Packet Filter (BPF) offload, Single Root I/O Virtualization (SRIOV)
or custom offloads can be added without any hardware modifications or even server reboot. These
extensions are not covered by this guide, which deals with the basic and OVSTC offload firmware only.

The basic firmware offers a wide variety of features including Receive Side Scaling (RSS), Checksum
Offload (IPv4/IPv6, TCP, UDP, tx/rx), Large Segmentation Offload (LSO), IEEE 802.3ad, Link flow con
trol, 802.1AZ Link Aggregation, etc. For more details regarding currently supported features, refer to
Basic Firmware Features.

www.corigine.com 7

5 Hardware Installation

This user guide focuses on x86 deployments of Open vSwitch hardware acceleration in supported ver
sions of Ubuntu, Red Hat Enterprise Linux (RHEL), and CentOS. As detailed in Validating the Driver , Co
rigine’s Agilio SmartNIC firmware is now upstreamed with the latest supported kernel versions of Ubuntu
and RHEL/CentOS. Whilst outoftree driver source files are available and installation instructions are
included in Appendix C: Installing the OutofTree NFP Driver , it is highly recommended, where possible,
to make use of the upstreamed drivers. Wherever applicable, separate instructions for RHEL/CentOS
and Ubuntu are provided.

Note: All commands in this guide are assumed to be run as root.

5.1 Physical installation

Physically install the SmartNIC in the host server and ensure proper cooling e.g. airflow over card.
Ensure the PCI slot is at least Gen3 x8 (can be placed in Gen3 x16 slot). Once installed, power up the
server and open a terminal. For additional support, contact smartnicsupport@corigine.com.

5.2 Identification

The serial number is printed beside a bar code on the outside of the card and is of the form
SMAAMDAXXXX-XXXXXXXXXXXX. The AMDAXXXX section denotes the assembly ID. In a running system
the assembly ID and serial number of a PCI device may be determined using the ethtool debug inter
face. This requires knowledge of the physical function network device identifier, or <netdev>, assigned
to the SmartNIC under consideration. Consult the section SmartNIC Netdev Interfaces for methods on
determining this identifier. The interface name <netdev> can be otherwise identified using the ip link

command. The following shell snippet illustrates this method for some particular <netdev> whose name
is cast as the argument $1:

#!/bin/bash

DEVICE=$1

ethtool -W ${DEVICE} 0

DEBUG=$(ethtool -w ${DEVICE} data /dev/stdout | strings)

SERIAL=$(echo "${DEBUG}" | grep "^SN:")

ASSY=$(echo ${SERIAL} | grep -oE AMDA[0-9]{4})

echo ${SERIAL}

echo Assembly: ${ASSY}

www.corigine.com 8

mailto:smartnic-support@corigine.com

To run the script execute:

./<script name> <netdev>

Example output of the script:

SN: SMAAMDA0099-000117070631 (CX)

Assembly: AMDA0099

Note: The strings command is commonly provided by the binutils package. This can be installed by
yum install binutils or apt-get install binutils, depending on your distribution.

5.3 Validation

Use one of the following lspci commands to validate that the SmartNIC is being correctly detected by
the host server and identify its PCI address. The PCI vendor identifier for SmartNICs with Board Support
Package (BSP) versions before 22.09 is 19ee and the specific PCI vendor identifier for SmartNICs with
AMDA2XXX product codes, with a BSP version of at least 22.09 is 1da8. The device tuples are 3800,
4000 and 6000 respectively, however 3800 devices are currently not supported by the OVSTC offload
firmware.

For SmartNICs with a vendor ID of 19ee:

lspci -bDnnd 19ee:

0000:02:00.0 Ethernet controller [0200]: Netronome Systems, Inc. Device [19ee:4000]

Or for SmartNICs with a vendor ID of 1da8:

lspci -bDnnd 1da8:

0000:17:00.0 Ethernet controller [0200]: Corigine, Inc. Device [1da8:3800]

Note: The lspci command is commonly provided by the pciutils package. This can be installed by
yum install pciutils or apt-get install pciutils, depending on your distribution.

www.corigine.com 9

6 Validating the Driver

The Corigine SmartNIC physical function driver with support for OVSTC offload is included in Linux
4.13 and later kernels. The list of minimum required operating system distributions and their respective
kernels, which include the NFP driver are as follows:

Operating System Kernel package version

RHEL/CentOS 7.5 3.10.0-862.el7

RHEL/CentOS 7.6 3.10.0-957.el7

RHEL/CentOS 7.7 3.10.0-1062.el7

RHEL 8.0 4.18.0-80.el8

Ubuntu 18.04 LTS 4.15.0-20.21

Note: Only the x86_64 architecture has been verified. If support for other architectures are required,
please contact Corigine support: Contact Us.

6.1 Confirm Upstreamed NFP Driver

Use the modinfo command to confirm that your current operating system includes the upstreamed nfp
module:

modinfo nfp | head -3

filename:

/lib/modules/3.10.0-862.el7/kernel/drivers/net/ethernet/netronome/nfp/nfp.ko.xz

description: The Netronome Flow Processor (NFP) driver.

license: GPL

Note: If the module is not found in your current kernel, refer to Appendix C: Installing the OutofTree
NFP Driver for more instructions, or upgrade your distribution and kernel to a version that includes the
upstreamed drivers.

www.corigine.com 10

6.2 Confirm that the NFP Driver is Loaded

Use the lsmod command to list the loaded driver modules and grep to search for the nfp string:

lsmod | grep nfp

nfp 161364 0

If the NFP driver is not loaded, the following command loads it manually:

modprobe nfp

www.corigine.com 11

7 Validating the Firmware

Corigine SmartNICs are fully programmable devices and depend on the driver to load firmware onto the
device at runtime. It is important to note that the functionality of the SmartNIC significantly depends on
the firmware loaded. The firmware files should be present in the following directory (contents may vary
depending on the installed firmware and distribution layout):

ls -ogR --time-style="+" /lib/firmware/netronome/

/lib/firmware/netronome/:

total 8

drwxr-xr-x. 2 4096 flower

drwxr-xr-x. 2 4096 nic

lrwxrwxrwx 1 31 nic_AMDA0081-0001_1x40.nffw -> nic/nic_AMDA0081-0001_1x40.nffw

lrwxrwxrwx 1 31 nic_AMDA0081-0001_4x10.nffw -> nic/nic_AMDA0081-0001_4x10.nffw

lrwxrwxrwx 1 31 nic_AMDA0096-0001_2x10.nffw -> nic/nic_AMDA0096-0001_2x10.nffw

lrwxrwxrwx 1 31 nic_AMDA0097-0001_2x40.nffw -> nic/nic_AMDA0097-0001_2x40.nffw

lrwxrwxrwx 1 36 nic_AMDA0097-0001_4x10_1x40.nffw -> nic/nic_AMDA0097-0001_4x10_

↪→1x40.nffw

lrwxrwxrwx 1 31 nic_AMDA0097-0001_8x10.nffw -> nic/nic_AMDA0097-0001_8x10.nffw

lrwxrwxrwx 1 36 nic_AMDA0099-0001_1x10_1x25.nffw -> nic/nic_AMDA0099-0001_1x10_

↪→1x25.nffw

lrwxrwxrwx 1 31 nic_AMDA0099-0001_2x10.nffw -> nic/nic_AMDA0099-0001_2x10.nffw

lrwxrwxrwx 1 31 nic_AMDA0099-0001_2x25.nffw -> nic/nic_AMDA0099-0001_2x25.nffw

lrwxrwxrwx 1 34 pci-0000:04:00.0.nffw -> flower/nic_AMDA0097-0001_2x40.nffw

lrwxrwxrwx 1 34 pci-0000:06:00.0.nffw -> flower/nic_AMDA0096-0001_2x10.nffw

/lib/firmware/netronome/flower:

total 11692

lrwxrwxrwx. 1 17 nic_AMDA0081-0001_1x40.nffw -> nic_AMDA0097.nffw

lrwxrwxrwx. 1 17 nic_AMDA0081-0001_4x10.nffw -> nic_AMDA0097.nffw

lrwxrwxrwx. 1 17 nic_AMDA0096-0001_2x10.nffw -> nic_AMDA0096.nffw

-rw-r--r--. 1 3987240 nic_AMDA0096.nffw

lrwxrwxrwx. 1 17 nic_AMDA0097-0001_2x40.nffw -> nic_AMDA0097.nffw

lrwxrwxrwx. 1 17 nic_AMDA0097-0001_4x10_1x40.nffw -> nic_AMDA0097.nffw

lrwxrwxrwx. 1 17 nic_AMDA0097-0001_8x10.nffw -> nic_AMDA0097.nffw

-rw-r--r--. 1 3988184 nic_AMDA0097.nffw

lrwxrwxrwx. 1 17 nic_AMDA0099-0001_2x10.nffw -> nic_AMDA0099.nffw

lrwxrwxrwx. 1 17 nic_AMDA0099-0001_2x25.nffw -> nic_AMDA0099.nffw

-rw-r--r--. 1 3990552 nic_AMDA0099.nffw

/lib/firmware/netronome/nic:

total 12220

-rw-r--r--. 1 1380496 nic_AMDA0081-0001_1x40.nffw

-rw-r--r--. 1 1389760 nic_AMDA0081-0001_4x10.nffw

-rw-r--r--. 1 1385608 nic_AMDA0096-0001_2x10.nffw

(continues on next page)

www.corigine.com 12

(continued from previous page)

-rw-r--r--. 1 1385664 nic_AMDA0097-0001_2x40.nffw

-rw-r--r--. 1 1391944 nic_AMDA0097-0001_4x10_1x40.nffw

-rw-r--r--. 1 1397880 nic_AMDA0097-0001_8x10.nffw

-rw-r--r--. 1 1386616 nic_AMDA0099-0001_1x10_1x25.nffw

-rw-r--r--. 1 1385608 nic_AMDA0099-0001_2x10.nffw

-rw-r--r--. 1 1386368 nic_AMDA0099-0001_2x25.nffw

If netronome/flower is not present, the linux-firmware package on the system is probably
outdated and does not contain the upstreamed OVSTC firmware. Refer to Appendix G: Upgrading
TC Firmware for upgrade instructions. The NFP driver will search for firmware in /lib/firmware/

netronome in the following order:

1: serial-_SERIAL_.nffw

2: pci-_PCI_ADDRESS_.nffw

3: nic-_ASSEMBLY-TYPE___BREAKOUTxMODE_.nffw

This search is logged by the kernel when the driver is loaded. For example:

dmesg | grep -A 4 nfp.*firmware

[3.260788] nfp 0000:04:00.0: nfp: Looking for firmware file in order of priority:

[3.260810] nfp 0000:04:00.0: nfp: netronome/serial-00-15-4d-13-51-0c-10-ff.

↪→nffw: not found

[3.260820] nfp 0000:04:00.0: nfp: netronome/pci-0000:04:00.0.nffw: not found

[3.262138] nfp 0000:04:00.0: nfp: netronome/nic_AMDA0097-0001_2x40.nffw: found,

↪→ loading...

The version of the loaded firmware for a particular netdev interface, as found in SmartNIC Netdev Inter
faces (for example enp4s0), or a physical port representor (for example, enp4s0np0) can be displayed
with the ethtool command:

ethtool -i <netdev>

driver: nfp

version: 3.10.0-862.el7.x86_64 SMP mod_u

firmware-version: 0.0.3.5 0.20 nic-2.0.7 nic

expansion-rom-version:

bus-info: 0000:04:00.0

Note: Replace <netdev> with the machine’s specific interface associated with the SmartNIC’s PF,
which is expected to be something like enp4s0 or enp4s0np0.

Firmware versions are displayed in order: NFD version, NSP version, APP FW version, driver APP. The
specific output above shows that basic NIC firmware is running on the card, as indicated by nic in the
firmware-version field.

www.corigine.com 13

8 Selecting the TC Offload Firmware

In order to initialize the SmartNIC with the TC offload firmware, a symbolic link based on the PCI address
of the SmartNIC should be created to the desired firmware. When the kernel module is loaded, it will
load the specified firmware instead of the default CoreNIC firmware. The TC offload firmware is located
in the /lib/firmware/netronome/flower/ directory.

Create a bash script named agilio-tc-fw-select.sh which will be used to create and persist this
symbolic link.

The script would need the <netdev> number. Review SmartNIC Netdev Interfaces to identify the Smart
NIC’s <netdev>, for example ens4np0, which is the machine’s specific interface associated with the
SmartNIC’s physical port. The interface <netdev> can be otherwise identified using the ip link com
mand:

ip link

11: ens3np0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP␣

↪→mode DEFAULT group default qlen 1000

link/ether 00:15:4d:13:00:8e brd ff:ff:ff:ff:ff:ff

altname enp2s0np0

12: ens3np1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP␣

↪→mode DEFAULT group default qlen 1000

link/ether 00:15:4d:13:00:8f brd ff:ff:ff:ff:ff:ff

altname enp2s0np1

13: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode␣

↪→DEFAULT group default qlen 1000

link/ether f6:f8:98:ab:98:31 brd ff:ff:ff:ff:ff:ff

14: ens5np0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode␣

↪→DEFAULT group default qlen 1000

link/ether 00:15:4d:13:06:0d brd ff:ff:ff:ff:ff:ff

altname enp5s0np0

Insert the following in the agilio-tc-fw-select.sh script:

www.corigine.com 14

#!/bin/bash

DEVICE=${1}

DEFAULT_ASSY=scan

ASSY=${2:-${DEFAULT_ASSY}}

APP=${3:-flower}

if ["x${DEVICE}" = "x" -o ! -e /sys/class/net/${DEVICE}]; then

echo Syntax: ${0} device [ASSY] [APP]

echo

echo This script associates the TC Offload firmware

echo with a Corigine SmartNIC.

echo

echo device: is the network device associated with the SmartNIC

echo ASSY: defaults to ${DEFAULT_ASSY}

echo APP: defaults to flower. flower-next is supported if updated

echo firmware has been installed.

exit 1

fi

It is recommended that the assembly be determined by inspection

The following code determines the value via the debug interface

if ["${ASSY}x" = "scanx"]; then

ethtool -W ${DEVICE} 0

DEBUG=$(ethtool -w ${DEVICE} data /dev/stdout | strings)

SERIAL=$(echo "${DEBUG}" | grep "^SN:")

ASSY=$(echo ${SERIAL} | grep -oE AMDA[0-9]{4})

fi

PCIADDR=$(basename $(readlink -e /sys/class/net/${DEVICE}/device))

FWDIR="/lib/firmware/netronome"

AMDA0081 and AMDA0097 uses the same firmware

if ["${ASSY}" = "AMDA0081"]; then

if [! -e ${FWDIR}/${APP}/nic_AMDA0081.nffw]; then

ln -sf nic_AMDA0097.nffw ${FWDIR}/${APP}/nic_AMDA0081.nffw

fi

fi

FW="${FWDIR}/pci-${PCIADDR}.nffw"

ln -sf "${APP}/nic_${ASSY}.nffw" "${FW}"

insert distro-specific initramfs section here...

For RHEL 7.5+ and CentOS 7.5+ systems, it is recommended to append the following snippet:

RHEL 7.5+ and CentOS 7.5+ distro-specific initramfs section

DRACUT_CONF=/etc/dracut.conf.d/98-nfp-firmware.conf

echo "install_items+=\" ${FW} \"" > "${DRACUT_CONF}"

dracut -f

www.corigine.com 15

Alternatively, for Ubuntu 18.04 systems, append the following snippet, instead:

Ubuntu 18.04 distro-specific initramfs section

HOOK=/etc/initramfs-tools/hooks/agilio_firmware

cat >${HOOK} << EOF

#!/bin/sh

PREREQ=""

prereqs()

{

echo "\$PREREQ"

}

case "\$1" in

prereqs)

prereqs

exit 0

;;

esac

. /usr/share/initramfs-tools/hook-functions

cp "${FW}" "\${DESTDIR}${FW}"

if have_module nfp ; then

manual_add_modules nfp

fi

exit 0

EOF

chmod a+x "${HOOK}"

update-initramfs -u

This adds the symlink and firmware to the initramfs.

The script needs execute permission which is given with the following command:

chmod +x agilio-tc-fw-select.sh

If the user wishes to autodetect the Assembly ID, run the script, ./agilio-tc-fw-select.sh, and
reload the driver with the following commands:

./agilio-tc-fw-select.sh <netdev> scan

rmmod nfp; modprobe nfp

If the outoftree firmware repository has been installed (as described in Appendix G: Upgrading TC
Firmware) and the user wishes to select that instead, run the script and reload the driver with the com
mands:

./agilio-tc-fw-select.sh <netdev> scan flower-next

rmmod nfp; modprobe nfp

www.corigine.com 16

8.1 Verify Firmware is Loaded

The firmware should indicate that it has the FLOWER capability. This can be confirmed by inspecting
the kernel message buffer using dmesg:

dmesg | grep nfp

[3131.714215] nfp 0000:04:00.0 eth4: Netronome NFP-6xxx Netdev: TxQs=8/8 RxQs=8/8

[3131.714221] nfp 0000:04:00.0 eth4: VER: 0.0.5.5, Maximum supported MTU: 9420

[3131.714227] nfp 0000:04:00.0 eth4: CAP: 0x20140673 PROMISC RXCSUM TXCSUM RXVLAN␣

↪→GATHER TSO1 RSS2 AUTOMASK IRQMOD FLOWER

Loading of flower firmware may also be confirmed using ethtool. AOTC indicates that OVSTC
firmware was loaded, as does flow. e.g.:

ethtool -i <netdev>

driver: nfp

version: 3.10.0-862.el7.x86_64 SMP mod_u

firmware-version: 0.0.5.5 0.22 0AOTC28A.5642 flow

expansion-rom-version:

bus-info: 0000:04:00.0

Note: Replace <netdev> with the machine’s specific interface associated with the SmartNIC’s PF,
which is expected to be something like ens3np0.

www.corigine.com 17

9 SmartNIC Netdev Interfaces

9.1 Representors

Representor <netdevs>, or representors, are <netdevs> created to represent the switchside of a port.
When Flower firmware for Agilio CX SmartNIC is loaded the following <netdevs> are created:

• A <netdev> for the PCI physical function (PF) to represent the PCI connection between the host
and the card.

• Representor <netdevs> for each physical port (MAC) of the card. These are used, for example, to
configure the link state of the port, access port statistics and carry fallback traffic. Fallback traffic
are packets which are not handled by the datapath on the SmartNIC, usually because there is no
matching rule present in the flowcache, and thus they are sent to the host for processing.

• A representor <netdev> for the PF. This is not currently used in an OVSTC system.

When SRIOV VFs (virtual functions) are instantiated, a representor <netdev> is created for each VF.
Like representors for physical ports, these are used for configuration, statistics and fallback packets.
When using OVSTC it is the physical port representor <netdevs>, and VF representor <netdevs> that
are attached to OVS which then allow OVS to configure the associated ports and VFs to send and
receive fallback packets.

9.2 Identification

To identify the Agilio NIC interfaces, begin by identifying the physical function and physical port repre
sentor names. This may be determined by examining the <netdevs> of the PF PCI devices for the Agilio
NIC using the lspci tool. The lspci tool requires the device tuple with the specific Corigine vendor.
The vendor ID is either 19ee or 1da8 and the device tuples are 4000, 3800 or 6000 respectively. These
variables are indicated to the lspci tool in the form <vendor>:<device tuples> tuples (e.g. 19ee:4000
or 1da8:3800). The <netdevs> associated with these devices may be determined by examining sysfs.

For SmartNICs with a vendor ID of 19ee:

#!/bin/bash

BDFS=$({ lspci -bDnnd 19ee:; } | cut -f 1 -d " ")

for i in $BDFS; do ls /sys/bus/pci/drivers/nfp/$i/net/; done

Or for SmartNICs with a vendor ID of 1da8:

www.corigine.com 18

#!/bin/bash

BDFS=$({ lspci -bDnnd 1da8:; } | cut -f 1 -d " ")

for i in $BDFS; do ls /sys/bus/pci/drivers/nfp/$i/net/; done

An example output of this would be:

enp4s0np0 enp4s0np1 enp4s0

Where enp4s0np0 and enp4s0np1 are the physical port representors and enp4s0 is the physical
function <netdev>:

The naming scheme for each port and physical function is dependent on the motherboard and the PCI
slot into which the NFP is installed. The PF name should be that associated with the PCI slot and the
physical port representor names should be the PF name with np[x] appended.

Note: Platform and BIOS configuration as well as enabling biosdevname can affect the port naming
policies.

To confirm that the representor enp4s0np0 is a physical port, verify the contents of the following file in
sysfs:

cat /sys/class/net/enp4s0np0/phys_port_name

p0

The physical ports will report the physical port name, while the physical function (in this case enp4s0)
will report an error.

cat /sys/class/net/enp4s0/phys_port_name

cat /sys/class/net/enp4s0/phys_port_name: Operation not supported

Once a physical port name has been determined, it is possible to determine the phys_switch_id of the
NFP. This is required to determine the names of the VF representors when multiple NFPs are installed
in a host. If an NFP has more than one physical port, both ports will share the same phys_switch_id.
The PF will report an error when its phys_switch_id is queried. For example, the phys_switch_id
of the device for which enp4s0np0 is a physical port , is:

cat /sys/class/net/enp4s0np0/phys_switch_id

00154d13510c

Please refer to the section Configuring SRIOV for information on how to instantiate VFs.

To identify VF representors, query the devices listed in /sys/class/net for phys_port_name and
phys_switch_id. VFs will share the switch id and report their individual VF number in the form
p0vf[x]. The following script creates a translation variable in bash that translates from VF index to
interface name:

www.corigine.com 19

#!/bin/bash

declare -A vf_repr_ifname

for ifname in $(ls /sys/class/net); do

pn=$(cat /sys/class/net/${ifname}/phys_port_name 2> /dev/null)

["x${pn}" != "x"] || continue

vfidx=$(echo "${pn}" | sed -rn 's/pf0vf([0-9]+)$/\1/p')

["x${vfidx}" != "x"] || continue

vf_repr_ifname[${vfidx}]="${ifname}"

done

Note: This operation is not atomic and so any other subsystem that renames the network devices may
invalidate this table.

The virtual functions associated with a PF PCI address are symlinked into the sysfs directory associ
ated with the PF PCI device. For example, if the PF is located at 0000:04:00.0, VF1 would be at
0000:04:08.1, and VF9 would be at 000:04:09.1. In /sys/bus/pci/devices/0000:04:00.
0/ virtfn0 and virtfn9 would link to those addresses:

ls -og --time-style="+" /sys/bus/pci/drivers/nfp/0000:04:00.0/virtfn[19]

lrwxrwxrwx 1 0 /sys/bus/pci/drivers/nfp/0000:04:00.0/virtfn1 -> ../0000:04:08.1

lrwxrwxrwx 1 0 /sys/bus/pci/drivers/nfp/0000:04:00.0/virtfn9 -> ../0000:04:09.1

9.3 Support for biosdevname

Corigine NICs support biosdevname <netdev> naming with recent versions of the utility, circa Decem
ber 2018, e.g. RHEL 8.0 and up. Furthermore, biosdevname will only be supported on kernel v4.19+.
There are some notable points to be aware of:

• Whenever an unsupported <netdev> is considered for naming, the biosdevname naming will
be skipped and the next inline naming scheme will take preference, e.g. the systemd naming
policies.

• <Netdevs> in breakout mode are not supported for naming.

• VF <netdevs> will still be subject to biosdevname naming irrespective of the breakout mode of
other <netdevs>.

• Physical function <netdevs> are not supported for naming.

• PF and VF representor <netdevs> are not supported for naming.

• When using an older version of the biosdevname utility or an older kernel, users will observe
inconsistent naming of <netdevs>.

To disable biosdevname users can add biosdevname=0 to the kernel command line.

Refer to the online biosdevname documentation for more details about the naming policy convention
that will be applied.

www.corigine.com 20

10 PF Link Configuration

The physical function <netdev> for the PCI device acts as a lowerdevice for representors and must be
up in order to allow sending and receiving fallback traffic on representors. As the PF <netdev> is not
used directly to carry packets, it is recommended that it be brought up without an IP address. It is also
advised to set the maximum transmission unit for the PF interface to the largest value supported by the
firmware, as advertised in the kernel message buffer, to avoid fallback packets from being unnecessarily
dropped due to being larger than the MTU of the PF.

dmesg | grep MTU

[3131.714221] nfp 0000:04:00.0 eth4: VER: 0.0.5.5, Maximum supported MTU: 9420

10.1 Settings

10.1.1 RHEL 7.5+ and CentOS 7.5+

iproute may be configured to bring up a device without addresses as follows. iproute may not
present on some installs, it can be installed using yum:

yum install iproute

In this example, the device is enp4s0 (replace this to match the PF <netdev> in question).

ip address flush dev enp4s0 scope global

ip link set dev enp4s0 mtu 9420

This process creates a connection for the <netdev>, disables the IPv4 configuration, sets the IPv6 con
figuration to be ignored and finally sets the MTU of the PF to the maximum value supported by the
firmware in order to avoid drops of fallback packets.

iproutemay now be used to bring up the connection. This will bring up the link on the physical function
which is essential to allow communication between the TC offload mechanism and the NFP.

ip link set dev enp4s0 up

Note: It is recommended to prevent NetworkManager from managing all NFP interfaces other than
the PF. Having NetworkManager manage the representor interfaces can interfere with the operation
of OVSTC. An example of how to correctly configure NetworkManager can be found at Confirming
Connectivity.

www.corigine.com 21

10.1.2 Ubuntu

A networkd-dispatcher script can be used to set an interface’s MTU and bring up the link of the
PF’s <netdev> without adding any IP addresses to it. Reconfiguring the MTU is discussed in more detail
in Configuring Interface Maximum Transmission Unit (MTU). In this example, a simple script is run for
each routable interface. Again, the device used here is enp4s0 which should be changed to match the
PF <netdev> installed in the system.

#!/bin/sh

cat > /usr/lib/networkd-dispatcher/routable.d/50-ifup-noaddr << 'EOF'

#!/bin/sh

ip link set mtu 9420 dev enp4s0

ip link set up dev enp4s0

EOF

chmod u+x /usr/lib/networkd-dispatcher/routable.d/50-ifup-noaddr

In order to ensure the hook above is run, regardless of whether networkd-dispatcher runs
before or after systemd-networkd, the configuration of networkd-dispatcher should be up
dated to generate events reflecting the existing state and behavior when it starts up. This is the
--run-startup-triggers option and may be passed to networkd-dispatcher on startup by
adding it to /etc/default/networkd-dispatcher.

#!/bin/sh

cat > /etc/default/networkd-dispatcher << 'EOF'

Specify command line options here. This config file is used

by the included systemd service file.

networkd_dispatcher_args="--run-startup-triggers"

EOF

Restarting network-dispatcher should now set the MTU and bring up the link of p1p5 if there are
any routable interfaces.

Note: For Ubuntu based systems, VF creation may also be done using this trigger method. Refer to
Configuring SRIOV for details.

systemctl restart networkd-dispatcher

The service status of networkd-dispatcher will then reflect the changes implemented:

service networkd-dispatcher status

networkd-dispatcher.service - Dispatcher daemon for systemd-networkd

Loaded: loaded (/lib/systemd/system/networkd-dispatcher.service; enabled;␣

↪→vendor preset: enabled)

Active: active (running) since Wed 2018-05-16 13:05:48 UTC; 2min 31s ago

Main PID: 41757 (networkd-dispat)

(continues on next page)

www.corigine.com 22

(continued from previous page)

Tasks: 2 (limit: 7372)

CGroup: /system.slice/networkd-dispatcher.service

└─41757 /usr/bin/python3 /usr/bin/networkd-dispatcher --

↪→run-startup-triggers

10.1.3 Upping Physical Port Representors

When using libvirt to manage virtual machines on the host, it’s also highly recommended to up all
physical port representors, whether or not they are plugged into the physical network. This is because
libvirt expects tomanage the virtual functions using any <netdev> associated with them. The specific
<netdev> chosen depends on which is listed first in sysfs. Since it’s very hard to control this, the
recommended procedure is to apply the above procedure to all the <netdevs> associated with the PF.

10.2 Verification

Verify link state and MTU of the PF <netdev>. For example the <netdev> enp4s0 (unlike the physical
port representors enp4s0np0 or enp4s0np1) outputs:

ip addr show enp4s0

14: enp4s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9420 qdisc mq state UP group␣

↪→default qlen 1000

link/ether 0e:c4:88:90:27:88 brd ff:ff:ff:ff:ff:ff

inet6 fe80::cc4:88ff:fe90:2788/64 scope link

valid_lft forever preferred_lft forever

www.corigine.com 23

11 Install Open vSwitch

11.1 Installation From a Recent Distribution

The preferred method of installing and upgrading Open vSwitch is through the distribution repositories.
The minimum recommended versions are those provided in supported releases of distributions. As a
guide they are as follows:

Operating System OVS Version

CentOS 7.6 2.9.0

CentOS 8.0 2.11.0

Ubuntu 18.04 LTS 2.10.0

11.1.1 RHEL

Please refer to Appendix B: Red Hat Repositories for information on configuring Red Hat repositories.
Once the repositories are configured, install Open vSwitch using yum:

yum install -y openvswitch

11.1.2 CentOS

For CentOS it is recommended to add OpenStack repositories from RDO. This can be achieved by using
yum directly. First install yum-utils to get the yum-config-manger utility, then install the repository:

yum install -y yum-utils

yum install -y centos-release-openstack-wallaby

It is recommended to disable this repository by default and only enable it for the Open vSwitch install:

yum-config-manager --disable centos-openstack*

Install Open vSwitch by temporarily enabling the repository for the specific yum call:

yum install -y --enablerepo centos-openstack-wallaby openvswitch

At the time of writing this will install openvswitch-2.15.4.

www.corigine.com 24

11.1.3 Ubuntu

In Ubuntu, Open vSwitch can be installed using apt-get:

apt-get update

apt-get install -y openvswitch-switch

11.1.4 Check OVS Install

If the installation procedure completed successfully, systemctl status openvswitch.service

should return the service status. More information on using Open vSwitch is provided later in Using
Open vSwitch.

www.corigine.com 25

12 Using the Linux Driver

12.1 Configuring SR-IOV

To configure Single Root I/O Virtualization (SRIOV) virtual functions, ensure that SRIOV is enabled in
the BIOS of the host machine. If SRIOV is disabled or unsupported by the motherboard/chipset being
used, the kernel message log will contain a PCI SR-IOV:-12 error when trying to create a VF. This can
be queried using the dmesg tool. The number of supported virtual functions on a netdev is exposed
by sriov_totalvfs in sysfs. For example, if ens3 is the interface associated with the SmartNIC’s
physical function, the following command will return the total supported number of VF’s:

cat /sys/class/net/ens3/device/sriov_totalvfs

55

Virtual functions can be allocated to a network interface by writing an integer to the sysfs file. For
example, to allocate 16 virtual functions to ens3:

echo 16 > /sys/class/net/ens3/device/sriov_numvfs

Note: The current Corigine cards supporting TC offload only have a single PF. This means that, even
though the SRIOV interfaces are exposed on the PF netdev and the physical port representors, they
refer to the same underlying physical function. It is therefore an error to attempt to allocate VF’s to
multiple physical port representors.

See Open vSwitch Hardware Offload Example for a practical application. SRIOV Virtual functions can
not be reallocated dynamically. In order to change the number of allocated virtual functions, existing
functions must first be deallocated by writing a 0 to the sysfs file. Otherwise, the system will return a
device or resource busy error:

echo 0 > /sys/class/net/ens3/device/sriov_numvfs

Note: Ensure any VMs are shut down and applications that may be using the VFs are stopped before
deallocation.

To persist the virtual functions on the system, it is suggested that the system initialization scripts be
updated to manage them. The following snippet illustrates how to implement such a configuration with
the physical function ens3:

www.corigine.com 26

#!/bin/sh

cat > /etc/init.d/vf-init << 'EOF'

#!/bin/sh

ip link set mtu 9420 dev ens3

ip link set up dev ens3

echo 4 > /sys/class/net/ens3/device/sriov_numvfs

EOF

chmod u+x /etc/init.d/vf-init

cat >> /etc/rc.d/rc.local << 'EOF'

/etc/init.d/vf-init

EOF

Executing the script above will ensure that, when the system is booted, 4 VF interfaces connected to
the PF on ens3 will be created.

In Ubuntu systems, networkd-dispatcher can be used, as demonstrated below:

#!/bin/sh

cat > /usr/lib/networkd-dispatcher/routable.d/50-ifup-noaddr << 'EOF'

#!/bin/sh

ip link set mtu 9420 dev ens3

ip link set up dev ens3

cat /sys/class/net/ens3/device/sriov_totalvfs > \

/sys/class/net/ens3/device/sriov_numvfs

EOF

chmod u+x /usr/lib/networkd-dispatcher/routable.d/50-ifup-noaddr

12.2 Configuring Interface Media Mode

This section details the configuration of the SmartNIC physical interfaces.

Note: For older kernels that do not support the configuration methods outlined below, please refer to
Appendix D: Working with Board Support Package on how to make use of the BSP toolkit to configure
interfaces.

12.2.1 Configuring Interface Link-speed

The following steps explain how to change between 10G mode and 25G mode on CX 2x25GbE cards.
The changing of port speed must be done in order, port 0 (p0) must be set to 10G before port 1 (p1)
may be set to 10G.

Down respective interface(s):

ip link set dev <netdev> down

www.corigine.com 27

Set interface link speed to 10G:

ethtool -s <netdev> speed 10000

Alternatively, set interface link speed to 25G:

ethtool -s <netdev> speed 25000

Reload driver for changes to take effect:

rmmod nfp && modprobe nfp

Note: Replace <netdev> with the machine’s specific interface associated with the SmartNIC’s PF,
which is expected to be something like enp4s0 or enp4s0np0.

12.3 Configuring Interface Maximum Transmission Unit (MTU)

The MTU of interfaces can temporarily be set using the iproute2 or ifconfig tools. Note that this
change will not persist. Setting this via Network Manager, or other appropriate OS configuration tool, is
recommended. Hereafter is an example of setting the MTU with the ip link command, which is part
of the iproute2 package.

Set MTU of <netdev> interface to 9000 bytes:

ip link set dev <netdev> mtu 9000

It is the responsibility of the user or the orchestration layer to set appropriate MTU values when handling
jumbo frames or utilizing tunnels. For example, if packets sent from a VM are to be encapsulated on the
card and egress a physical port, then the MTU of the VF should be set to lower than that of the physical
port to account for the extra bytes added by the additional header.

If a setup is expected to see fallback traffic between the SmartNIC and the kernel, then the user should
also ensure that the PF MTU is appropriately set to avoid unexpected drops on this path.

12.4 Configuring FEC modes

CX 2x25GbE SmartNICs support Forward Error Correction (FEC) mode configuration, e.g. Auto, Fire
code BaseR, ReedSolomon andOff modes. Each physical port’s FEC mode can be set independently
via the ethtool command. To view the currently supported FEC modes of the interface use the follow
ing:

ethtool <netdev>

Settings for <netdev>:

Supported ports: [FIBRE]

Supported link modes: Not reported

(continues on next page)

www.corigine.com 28

(continued from previous page)

Supported pause frame use: No

Supports auto-negotiation: No

Supported FEC modes: None BaseR RS

Advertised link modes: Not reported

Advertised pause frame use: No

Advertised auto-negotiation: No

Advertised FEC modes: BaseR RS

Speed: 25000Mb/s

Duplex: Full

Port: Direct Attach Copper

PHYAD: 0

Transceiver: internal

Auto-negotiation: on

Link detected: yes

The output above details which FEC modes are supported for this interface. Note that the CX 2x25GbE
SmartNIC used for the example above only supports Firecode BaseR FEC mode on ports that are
forced to 10G speed.

Note: ethtool FEC support is only available in kernel 4.14 and newer or RHEL 7.5+ CentOS 7.5,
and equivalent distributions. The Corigine upstream kernel driver provides ethtool FEC support from
kernel 4.15. Furthermore, the SmartNIC NVRAM versioning system has been updated, and it is recom
mended for the NVRAM version to be at least 22.040. With respect to the previous naming, a minimum
NVRAM version of 020025.020025.02006e is required to support ethtool FEC get/set operations.

To determine your version of the current SmartNIC NVRAM, examine the kernel message buffer:

dmesg | grep 'nfp.*BSP'

[2.944857] nfp 0000:65:00.0: BSP: 22.10-0

This example lists a version of 22.100 which is sufficient to support ethtool FEC mode configuration.
To update your SmartNIC NVRAM flash, please contact Corigine support.

If the SmartNIC NVRAM or the kernel does not support ethtool modification of FEC modes, no sup
ported FECmodes will be listed in the ethtool output for the port. This could be because of an outdated
kernel version or an unsupported distribution (e.g. Ubuntu 16.04, irrespective of the kernel version).

ethtool <netdev>

Settings for <netdev>:

...

Supported FEC modes: None

To show the currently active FEC mode for either the netdev or the physical port representors:

ethtool --show-fec <netdev>

FEC parameters for <netdev>:

Configured FEC encodings: Auto Off BaseR RS

Active FEC encoding: Auto

www.corigine.com 29

mailto:smartnic-support@corigine.com

To force the FEC mode for a particular port, autonegotiation must be disabled with the following:

ip link set <netdev> down

ethtool -s <netdev> autoneg off

ip link set <netdev> up

Note: In order to change the autonegotiation configuration the port must be down.

Note: Changing the autonegotiation configuration will not affect the SmartNIC port speed. Please see
Configuring Interface Linkspeed to adjust this setting.

To modify the FEC mode to Firecode BaseR:

ethtool --set-fec <netdev> encoding baser

Verify the newly selected mode:

ethtool --show-fec <netdev>

FEC parameters for <netdev>:

Configured FEC encodings: Auto Off BaseR RS

Active FEC encoding: BaseR

To modify the FEC mode to ReedSolomon:

ethtool --set-fec <netdev> encoding rs

Verify the newly selected mode:

ethtool --show-fec <netdev>

FEC parameters for <netdev>:

Configured FEC encodings: Auto Off BaseR RS

Active FEC encoding: RS

To modify the FEC mode to Off :

ethtool --set-fec <netdev> encoding off

Verify the newly selected mode:

ethtool --show-fec <netdev>

FEC parameters for <netdev>:

Configured FEC encodings: Auto Off BaseR RS

Active FEC encoding: Off

Revert back to the default Auto setting:

ethtool --set-fec <netdev> encoding auto

www.corigine.com 30

Verify the setting again:

ethtool --show-fec <netdev>

FEC parameters for <netdev>:

Configured FEC encodings: Auto Off BaseR RS

Active FEC encoding: Auto

Note: FEC and auto negotiation settings are persisted on the SmartNIC across reboots.

12.5 Setting Interface Breakout Mode

The following commands only work on kernel versions 4.13 and later. If your kernel is older than 4.13
or you do not have devlink support enabled, refer to the following section on configuring interfaces:
Configure Media Settings.

Note: Breakout mode settings are only applicable to CX 40GbE and CX 2x40GbE SmartNICs.

Determine the card’s PCI address with the lspci command with the correct vendor ID. The PCI ven
dor identifier for SmartNICs with Board Support Package (BSP) versions before 22.09 is 19ee and the
specific PCI vendor identifier for SmartNICs with AMDA2XXX product codes, with a BSP version of at
least 22.09, is 1da8.

For SmartNICs with a vendor ID of 19ee:

lspci -bDnnd 19ee:

0000:02:00.0 Ethernet controller [0200]: Netronome Systems, Inc. Device [19ee:4000]

Or for SmartNICs with a vendor ID of 1da8:

lspci -bDnnd 1da8:

0000:17:00.0 Ethernet controller [0200]: Corigine, Inc. Device [1da8:3800]

List the devices:

devlink dev show

pci/0000:04:00.0

Split the first physical 40G port from 1x40G to 4x10G ports:

devlink port split pci/0000:04:00.0/0 count 4

Split the second physical 40G port from 1x40G to 4x10G ports:

devlink port split pci/0000:04:00.0/4 count 4

www.corigine.com 31

If the SmartNIC’s port is already configured in breakout mode (it has already been split) then devlink
will respond with an argument error. Whenever changes to the port configuration are made, the original
netdevs associated with the port will be removed from the system.

dmesg | tail

[5696.432306] nfp 0000:04:00.0: nfp: Port #0 config changed, unregistering.␣

↪→Driver reload required before port will be operational again.

[6270.553902] nfp 0000:04:00.0: nfp: Port #4 config changed, unregistering.␣

↪→Driver reload required before port will be operational again.

The driver needs to be reloaded for the changes to take effect. Older driver/SmartNIC NVRAM versions
may require a system reboot for changes to take effect. The driver communicates events related to port
split/unsplit in the system logs. The driver may be reloaded with the following command:

rmmod nfp; modprobe nfp

After reloading the driver, the netdevs associated with the split ports will be available for use:

ip link show

...

68: enp4s0np0s0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

69: enp4s0np0s1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

70: enp4s0np0s2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

71: enp4s0np0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

72: enp4s0np1s0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

73: enp4s0np1s1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

74: enp4s0np1s2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

75: enp4s0np1s3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT␣

↪→group default qlen 1000

Note: There is an ordering constraint to splitting and unsplitting the ports on CX 2x40GbE SmartNICs.
The first physical 40G port cannot be split without the second physical port also being split, hence, 1x40G
+ 4x10G is always invalid even if it’s only intended to be a transitional mode. The driver will reject such
configurations.

Breakout mode persists on the SmartNIC across reboots. To revert back to the original 2x40G ports use
the unsplit subcommand.

To unsplit port 1:

devlink port unsplit pci/0000:04:00.0/4

www.corigine.com 32

To unsplit port 0:

devlink port unsplit pci/0000:04:00.0/0

The NFP drivers will again have to be reloaded (rmmod nfp then modprobe nfp) for unsplit changes
in the port configuration to take effect.

12.6 Confirming Connectivity

12.6.1 Allocating IP Addresses

Under RHEL 7.5+ and CentOS 7.5+, the network configuration is managed by default using Network
Manager. It is recommended to disable NetworkManager on the NFP interfaces when using OVSTC,
as it can interfere with the TC rules that get installed on the interfaces. The easiest way to achieve this
is to configure NetworkManager to ignore interfaces which are bound to NFP drivers. The config file for
this can be created with the following script:

cat >/etc/NetworkManager/conf.d/nfp.conf << EOF

[keyfile]

unmanaged-devices=driver:nfp,driver:nfp_netvf,except:interface-name=ens1

EOF

systemctl restart NetworkManager

Verification can be done by looking at the output of nmcli d before and after the commands above. All
the interfaces that are bound to the nfp or nfp_netvf driver, except the PF ens1, should now be in
the unmanaged state.

Use iproute2 to configure an IP on the port for a quick connectivity test. Remember to also make sure
that the PF is up, ens1 in the example below:

ip address add 10.0.0.2/24 dev ens1np0

ip link set ens1np0 up

ip link set ens1 up

12.6.2 Pinging interfaces

After you have successfully assigned IP addresses to the NFP interfaces, perform a ping to another
address on the same subnet to test to confirm connectivity:

ping 10.0.0.2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.067 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.062 ms

www.corigine.com 33

13 Basic Firmware Features

In this section ethtool will be used to view and configure SmartNIC interface parameters.

13.1 Summary of Features

The following table summarizes the features of the OVSTC firmware. More detailed summaries follow
hereafter.

Flow Based Features Flow Match Offload

Flow Action Offload

More Advanced Flows Tunnel Match Fields (General)

Tunnel Set Fields (General)

Tunnel Types

Conntrack

QoS Metering

Overlay Tunnel

Configurations Bonding (Using Kernel Bonds)

Bonding (Using OVS Bonds)

Tunnel + Bonding

Tunnel + VLAN

Tunnel + VLAN + Bonding

Two Different Tunnel Configurations

Ingress QoS

Metering

OpenStack OVN + XVIO Support

Other VFs

Wildcard Flows

Ethtool Offloads

Max MTU

continues on next page

www.corigine.com 34

continued from previous page

Fallback Path for Unsupported Flows

Port Breakout Nodes

DPDK RTE Flow Basic Flow Offload

DPDK RTE Flow VXLAN/GRE/GENEVE Tunnel Offload

13.1.1 Flow Based Features

Flow Match Offload

in_port

Layer 2 src_mac, dst_mac

Layer 2.5 mpls, label, tos, bos

Single VLAN: VID, TCI, PCP

Double VLAN (QinQ): VID, TCI, PCP in both fields

Layer 3 IPv4: src, dst, proto ttl, ToS, Frag

IPv6: src, dst, next header, hop limit, tos, frag

Layer 4 TCP: src, dst, flags

UDP: src, dst

SCTP: src, dst

Flow Action Offload

Layer 2 set_src, set_dst

Layer 2.5 VLAN: push, pop, set

MPLS: push, pop, set

Layer 3 IPv4: set_src, set_dst, set_ttl, set_tos

IPv6: set_src, set_dst, set_ttl, set_tos

Layer 4 TCP: set_sport, set_dport

UDP: set_sport, set_dport

www.corigine.com 35

13.1.2 More Advanced Flows

Tunnel Match Fields (General)

• tun_ID

• Outer IPv4: src, dst

• Outer IPv6: src, dst

Tunnel Set Fields (General)

• tun_ID

• Unmasked set of outer IPv4 src/dst

• Unmasked set of outer IPv6 src/dst

Tunnel Types

• VXLAN

• GENEVE

• GENEVE + options

• NVGRE (GRE with next header Ethernet)

Conntrack

• +trk, +est flows a requirement

• extra conntrack fields: ct_zone, ct_label, ct_mark

• Protocols: IPv4: TCP, UDP

• Protocols: IPv6: TCP, UDP

• Nat

QoS - Metering

• Support meter table rate limiting shared between multiple flow rules

• Only support meter table with one band

• Only support meter table with action result of drop which is typical for a meter table

• Support meter table rate limiting base on PPS and BPS

www.corigine.com 36

Overlay Tunnel

• Support tunnel offload of VXLAN, GENEVE and GRE.

• Tunnel IP address can be configured on OVS bridge, PHY interface or bond interface.

13.1.3 Configurations

Bonding (Using Kernel Bonds)

• Activebackup (mode 1)

• Balance XoR (mode 2)

• hash_policy (layer3+4) or (encap3+4)

• 802.3ad (mode 4)

• Teamd, teamdctl can also be used to configure linux bonds.

Bonding (Using OVS Bonds)

• Activebackup

• Balanceslb

• Balancetcp (but only if recirculation is turned off)

Tunnel + Bonding

• All supported types can also be used with Bonding (Linux bonds only).

Tunnel + VLAN

• A single VLAN on a tunnel outer header is supported.

Tunnel + VLAN + Bonding

• This can be combined with a single outer VLAN.

Two Different Tunnel Configurations

• IPontheport: The tunnel endpoint IP is applied to the phyport representor. The phyport repre
sentor is NOT added to a bridge.

• IPonthebridge: The tunnel endpoint IP is applied to the bridge, and the phyport representor IS
added to that bridge.

www.corigine.com 37

Ingress QoS

• Bitspersecond (BPS)

• Packetspersecond (PPS)

• BPS+PPS combined

Metering

• Bitspersecond (BPS)

• Packetspersecond (PPS)

OpenStack OVN + XVIO Support

• Flow tables offloading of OpenStack in the framework

• Based on OVN + XVIO

13.1.4 Other

VFs

• 55 VFs

Wildcard Flows

• 480k on CX cards

• 960k on LX cards

Ethtool Offloads

• rx/tx checksumming

• scatter gather

• TSO

• GSO

• GRO

www.corigine.com 38

Max MTU

• 9532

Fallback Path for Unsupported Flows

• Flows which are not supported for offloading will still traverse the system, just at a much slower
rate.

• 8Q’s available to handle such traffic.

Port Breakout Nodes

• 40G ports can be split into 4x10G ports

• 25G ports can be set to 10G

DPDK RTE Flow - Basic Flow Offload

• Setting of SRC/DST MAC address

• Setting of SRC/DST IPv4 address

• Setting of SRC/DST IPv6 address

• Setting of SRC/DST port

• Setting of TTL

• Setting of IPv4/IPv6 DSCP

• Push/Pop VLAN

DPDK RTE Flow - VXLAN/GRE/GENEVE Tunnel Offload

• The encap/decap action of IPv4/IPv6 VxLAN tunnel

• The encap/decap action of IPv4/IPv6 NVGRE tunnel

• The encap/decap action of IPv4/IPv6 GENEVE tunnel

13.2 View Interface Parameters

The -k flag can be used to view current interface configurations. For example, using a CX 1x40GbE
NIC with a physical port representor <netdev>:

ethtool -k <netdev>

Features for <netdev>:

rx-checksumming: off [fixed]

tx-checksumming: off

tx-checksum-ipv4: off [fixed]

(continues on next page)

www.corigine.com 39

(continued from previous page)

tx-checksum-ip-generic: off [fixed]

tx-checksum-ipv6: off [fixed]

tx-checksum-fcoe-crc: off [fixed]

tx-checksum-sctp: off [fixed]

scatter-gather: off

tx-scatter-gather: off [fixed]

tx-scatter-gather-fraglist: off [fixed]

tcp-segmentation-offload: off

tx-tcp-segmentation: off [fixed]

tx-tcp-ecn-segmentation: off [fixed]

tx-tcp6-segmentation: off [fixed]

tx-tcp-mangleid-segmentation: off [fixed]

udp-fragmentation-offload: off [fixed]

generic-segmentation-offload: off [requested on]

generic-receive-offload: on

large-receive-offload: off [fixed]

rx-vlan-offload: off [fixed]

tx-vlan-offload: off [fixed]

ntuple-filters: off [fixed]

receive-hashing: off [fixed]

highdma: off [fixed]

rx-vlan-filter: off [fixed]

vlan-challenged: off [fixed]

tx-lockless: off [fixed]

netns-local: off [fixed]

tx-gso-robust: off [fixed]

tx-fcoe-segmentation: off [fixed]

tx-gre-segmentation: off [fixed]

tx-ipip-segmentation: off [fixed]

tx-sit-segmentation: off [fixed]

tx-udp_tnl-segmentation: off [fixed]

fcoe-mtu: off [fixed]

tx-nocache-copy: off

loopback: off [fixed]

rx-fcs: off [fixed]

rx-all: off [fixed]

tx-vlan-stag-hw-insert: off [fixed]

rx-vlan-stag-hw-parse: off [fixed]

rx-vlan-stag-filter: off [fixed]

busy-poll: off [fixed]

tx-gre-csum-segmentation: off [fixed]

tx-udp_tnl-csum-segmentation: off [fixed]

tx-gso-partial: off [fixed]

tx-sctp-segmentation: off [fixed]

l2-fwd-offload: off [fixed]

hw-tc-offload: on

rx-udp_tunnel-port-offload: off [fixed]

www.corigine.com 40

Note: Replace <netdev> with the machine’s specific interface associated with the SmartNIC’s PF,
which is expected to be something like enp4s0 or enp4s0np0.

13.3 Configuring Interface Settings

Unless otherwise stated, changing the interface settings detailed below will not require reloading of the
NFP drivers for changes to take effect, unlike the interface breakouts described in Configuring Interface
Media Mode. If the interface has more than one physical port, changes must be applied to the physical
function <netdev> and those settings will reflect on both ports. Unlike the basic CoreNIC firmware,
each physical port on the interface cannot be configured independently and attempting to do so will
produce an error.

13.3.1 Receive Checksum Offload

When enabled, checksum calculation and error checking comparison for received packets is offloaded
to the NFP SmartNIC’s flow processor rather than the host CPU.

To enable receive checksum offload:

ethtool -K <netdev> rx on

To disable receive checksum offload:

ethtool -K <netdev> rx off

13.3.2 Transmit Checksum Offload

When enabled, checksum calculation for outgoing packets is offloaded to the NFP SmartNIC’s flow
processor rather than the host’s CPU.

To enable transmit checksum offload:

ethtool -K <netdev> tx on

To disable transmit checksum offload:

ethtool -K <netdev> tx off

www.corigine.com 41

13.3.3 Scatter/Gather

When enabled the NFP will use scatter/gather I/O, also known as Vectored I/O, which allows a single
procedure call to sequentially read data from multiple buffers and write it to a single data stream. Only
changes to the scattergather interface settings (from on to off or off to on) will produce a terminal
output as shown below:

ethtool -K <netdev> sg on

Actual changes:

scatter-gather: on

tx-scatter-gather: on

generic-segmentation-offload: on

ethtool -K <netdev> sg off

Actual changes:

scatter-gather: off

tx-scatter-gather: off

generic-segmentation-offload: off

13.3.4 TCP Segmentation Offload (TSO)

When enabled, this parameter causes all functions related to the segmentation of TCP packets at egress
to be offloaded to the NFP.

To enable TCP segmentation offload:

ethtool -K <netdev> tso on

To disable TCP segmentation offload:

ethtool -K <netdev> tso off

13.3.5 Generic Segmentation Offload (GSO)

This parameter offloads segmentation for transport layer protocol data units other than segments and
datagrams for TCP/UDP respectively to the NFP. GSO operates at packet egress.

To enable generic segmentation offload:

ethtool -K <netdev> gso on

To disable generic segmentation offload:

ethtool -K <netdev> gso off

www.corigine.com 42

13.3.6 Generic Receive Offload (GRO)

This parameter enables software implementation of Large Receive Offload (LRO), which aggregates
multiple packets at ingress into a large buffer before they are passed higher up the networking stack.

To enable generic receive offload:

ethtool -K <netdev> gro on

To disable generic receive offload:

ethtool -K <netdev> gro off

Note: Take note that scripts that use ethtool -i <netdev> to get businfo will not work on repre
sentors as this information is not populated for representor devices.

www.corigine.com 43

14 Using Open vSwitch

14.1 Running Open vSwitch

14.1.1 RHEL and CentOS

The first step is to start Open vSwitch by using the following command:

systemctl start openvswitch

View the status of Open vSwitch with the command below:

systemctl status openvswitch

● openvswitch.service - Open vSwitch

Loaded: loaded (/usr/lib/systemd/system/openvswitch.service; enabled; vendor␣

↪→preset: disabled)

Active: active (exited) since Tue 2022-06-28 22:25:16 SAST; 9h ago

Process: 1196 ExecStart=/bin/true (code=exited, status=0/SUCCESS)

Main PID: 1196 (code=exited, status=0/SUCCESS)

Tasks: 0 (limit: 151960)

Memory: 0B

CGroup: /system.slice/openvswitch.service

Jun 28 22:25:16 nala systemd[1]: Starting Open vSwitch...

Jun 28 22:25:16 nala systemd[1]: Started Open vSwitch.

The openvswitch service controls the ovsdbserver and ovsvswitchd services. Their statuses can also
be checked by running the commands below:

systemctl status ovsdb-server

● ovsdb-server.service - Open vSwitch Database Unit

Loaded: loaded (/usr/lib/systemd/system/ovsdb-server.service; static; vendor␣

↪→preset: disabled)

Active: active (running) since Tue 2022-06-28 22:25:15 SAST; 9h ago

Process: 995 ExecStart=/usr/share/openvswitch/scripts/ovs-ctl --no-ovs-vswitchd -

↪→-no-monitor --system-id=random ${OVS_USER_OPT} start $OPTIONS (code=exited>

Process: 992 ExecStartPre=/bin/sh -c if ["$${OVS_USER_ID/:*/}" != "root"];␣

↪→then /usr/bin/echo "OVS_USER_OPT=--ovs-user=${OVS_USER_ID}" >> /run/openvswitc>

Process: 978 ExecStartPre=/bin/sh -c /usr/bin/echo "OVS_USER_ID=${OVS_USER_ID}" >

↪→ /run/openvswitch.useropts (code=exited, status=0/SUCCESS)

Process: 917 ExecStartPre=/usr/bin/chown ${OVS_USER_ID} /var/run/openvswitch /

↪→var/log/openvswitch (code=exited, status=1/FAILURE)

Process: 914 ExecStartPre=/usr/bin/rm -f /run/openvswitch.useropts (code=exited,␣

↪→status=0/SUCCESS)

(continues on next page)

www.corigine.com 44

(continued from previous page)

Main PID: 1094 (ovsdb-server)

Tasks: 1 (limit: 151960)

Memory: 37.4M

CGroup: /system.slice/ovsdb-server.service

└─1094 ovsdb-server /etc/openvswitch/conf.db -vconsole:emer -

↪→vsyslog:err -vfile:info --remote=punix:/var/run/openvswitch/db.sock --private-

↪→key=db:>

Jun 28 22:25:12 nala systemd[1]: Starting Open vSwitch Database Unit...

Jun 28 22:25:13 nala chown[917]: /usr/bin/chown: cannot access '/var/run/

↪→openvswitch': No such file or directory

Jun 28 22:25:15 nala ovs-ctl[995]: Starting ovsdb-server [OK]

Jun 28 22:25:15 nala ovs-vsctl[1100]: ovs|00001|vsctl|INFO|Called as ovs-vsctl --

↪→no-wait -- init -- set Open_vSwitch . db-version=8.2.0

Jun 28 22:25:15 nala ovs-vsctl[1112]: ovs|00001|vsctl|INFO|Called as ovs-vsctl --

↪→no-wait set Open_vSwitch . ovs-version=2.15.6 "external-ids:system-id=\"8971>

Jun 28 22:25:15 nala ovs-ctl[995]: Configuring Open vSwitch system IDs [OK]

Jun 28 22:25:15 nala ovs-vsctl[1118]: ovs|00001|vsctl|INFO|Called as ovs-vsctl --

↪→no-wait add Open_vSwitch . external-ids hostname=nala

Jun 28 22:25:15 nala ovs-ctl[995]: Enabling remote OVSDB managers [OK]

Jun 28 22:25:15 nala systemd[1]: Started Open vSwitch Database Unit.

...

systemctl status ovs-vswitchd

● ovs-vswitchd.service - Open vSwitch Forwarding Unit

Loaded: loaded (/usr/lib/systemd/system/ovs-vswitchd.service; static; vendor␣

↪→preset: disabled)

Active: active (running) since Tue 2022-06-28 22:25:16 SAST; 9h ago

Process: 1135 ExecStart=/usr/share/openvswitch/scripts/ovs-ctl --no-ovsdb-server␣

↪→--no-monitor --system-id=random ${OVS_USER_OPT} start $OPTIONS (code=exite>

Process: 1133 ExecStartPre=/usr/bin/chmod 0775 /dev/hugepages (code=exited,␣

↪→status=0/SUCCESS)

Process: 1131 ExecStartPre=/bin/sh -c /usr/bin/chown :$${OVS_USER_ID##*:} /dev/

↪→hugepages (code=exited, status=0/SUCCESS)

Main PID: 1187 (ovs-vswitchd)

Tasks: 1 (limit: 151960)

Memory: 113.2M

CGroup: /system.slice/ovs-vswitchd.service

└─1187 ovs-vswitchd unix:/var/run/openvswitch/db.sock -vconsole:emer -

↪→vsyslog:err -vfile:info --mlockall --user openvswitch:hugetlbfs --no-chdir ->

Jun 28 22:25:15 nala systemd[1]: Starting Open vSwitch Forwarding Unit...

Jun 28 22:25:16 nala ovs-ctl[1168]: Inserting openvswitch module [OK]

Jun 28 22:25:16 nala ovs-ctl[1135]: Starting ovs-vswitchd [OK]

Jun 28 22:25:16 nala ovs-vsctl[1195]: ovs|00001|vsctl|INFO|Called as ovs-vsctl --

↪→no-wait add Open_vSwitch . external-ids hostname=nala

Jun 28 22:25:16 nala ovs-ctl[1135]: Enabling remote OVSDB managers [OK]

Jun 28 22:25:16 nala systemd[1]: Started Open vSwitch Forwarding Unit.

...

www.corigine.com 45

Open vSwitch can be enabled to run on reboot. This is done below:

systemctl enable openvswitch

14.1.2 Ubuntu

The first step is to start Open vSwitch by using the following command:

systemctl start openvswitch-switch

View the status of Open vSwitch with the command below:

systemctl status openvswitch-switch

● openvswitch-switch.service - Open vSwitch

Loaded: loaded (/lib/systemd/system/openvswitch-switch.service; enabled; vend

Active: active (exited) since Wed 2018-05-09 08:35:44 UTC; 20s ago

Main PID: 1824 (code=exited, status=0/SUCCESS)

Tasks: 0 (limit: 1153)

CGroup: /system.slice/openvswitch-switch.service

The openvswitchvswitch service controls the ovsdbserver and ovsvswitchd services. Their statuses
can also be checked by running the commands below:

systemctl status ovsdb-server

● ovsdb-server.service - Open vSwitch Database Unit

Loaded: loaded (/lib/systemd/system/ovsdb-server.service; static; vendor pres

Active: active (running) since Wed 2018-05-09 08:35:44 UTC; 1min 38s ago

Tasks: 1 (limit: 1153)

CGroup: /system.slice/ovsdb-server.service

└─1749 ovsdb-server /etc/openvswitch/conf.db -vconsole:emer -vsyslog:

systemctl status ovs-vswitchd

● ovs-vswitchd.service - Open vSwitch Forwarding Unit

Loaded: loaded (/lib/systemd/system/ovs-vswitchd.service; static; vendor pres

Active: active (running) since Wed 2018-05-09 08:35:44 UTC; 2min 6s ago

Main PID: 1813 (ovs-vswitchd)

Tasks: 1 (limit: 1153)

CGroup: /system.slice/ovs-vswitchd.service

└─1813 ovs-vswitchd unix:/var/run/openvswitch/db.sock -vconsole:emer

Open vSwitch can be enabled to run on reboot. This is done below:

systemctl enable openvswitch-switch

Synchronizing state of openvswitch-switch.service with SysV service script with /

↪→lib/systemd/systemd-sysv-install.

Executing: /lib/systemd/systemd-sysv-install enable openvswitch-switch

www.corigine.com 46

14.2 Configuring Open vSwitch Hardware Offload

To enable TC offloading in Open vSwitch, the hw-tc-offload flag for the representors of any ports
that will send or receive offloaded traffic must be set to true. Unlike interface settings described in
Configuring Interface Settings hw-tc-offload flags must be set for each physical port representor.
Hardware TC offload is enabled by default and can be verified for each port using ethtool. Note that
the PF interface won’t show the hw-tc-offload flag being set by default. For example:

ethtool -k <netdev> | grep hw-tc-offload

hw-tc-offload: on

Note: Replace <netdev> with the machine’s specific interface associated with the SmartNIC’s PF,
which is expected to be something like ens4.

The setting may be toggled for each port independently between on and off using ethtool:

ethtool -K <netdev> hw-tc-offload on

Note: Hardware offload changes won’t persist across reboots. The default setting for TC offloads when
using the flower firmware is on.

The Open vSwitch hardware offload is configured as follows:

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true other_config:tc-

↪→policy=none

This change will persist across reboots. But, in the absence of a reboot, Open vSwitch must be restarted:

In RHEL and CentOS this is performed by the command:

systemctl restart openvswitch

In Ubuntu, the following command is used instead:

systemctl restart openvswitch-switch

14.3 Open vSwitch Hardware Offload Example

Create an Open vSwitch bridge and add two interfaces: the representors of the first physical port and the
VF. Please refer to section SmartNIC Netdev Interfaces for information on netdevs of the SmartNICs
and Configuring SRIOV for creating VFs associated with a physical interface. The following example
requires at least one VF representor (in this case eth1) associated with the PF netdev.

Create an Open vSwitch bridge:

www.corigine.com 47

ovs-vsctl add-br br0

Add representor netdev for the first physical port to the bridge:

ovs-vsctl add-port br0 <netdev>

Add the representor netdev of the first VF to bridge:

ovs-vsctl add-port br0 eth1

The ovs-vsctl show command can be used to verify the config of the bridge, and the kernel datapath
can be verified with ovs-dpctl show:

ovs-vsctl show

5e9b8d4b-4a29-41af-92f1-3d9f161aa176

Bridge "br0"

Port "br0"

Interface "br0"

type: internal

Port "eth1"

Interface "eth1"

Port "ens4"

Interface "ens4"

ovs_version: "2.15.6"

ovs-dpctl show

system@ovs-system:

lookups: hit:19 missed:14 lost:0

flows: 14

masks: hit:84 total:5 hit/pkt:2.55

port 0: ovs-system (internal)

port 1: br0 (internal)

port 2: enp4s0np0

port 3: eth1

Packets should now be able to flow between the VF and the external port. The view of Open vSwitch for
offloaded and nonoffloaded flows can be seen listed using ovs-appctl. The port numbers used for
in_port and the (output) actions correspond to those listed by ovs-appctl show as shown above.

To view the offloaded datapath flows, use the command below:

ovs-appctl dpctl/dump-flows type=offloaded

in_port(2),eth(src=00:15:4d:0e:08:a7,dst=66:11:3e:c9:cf:2f),eth_type(0x0806),␣

↪→packets:2, bytes:92, used:187.890s, actions:3

in_port(2),eth(src=00:15:4d:0e:08:a7,dst=66:11:3e:c9:cf:2f),eth_type(0x0800),␣

↪→packets:9, bytes:882, used:188.860s, actions:3

...

www.corigine.com 48

To view the nonoffloaded datapath flows, use the command below:

ovs-appctl dpctl/dump-flows type=ovs

recirc_id(0),in_port(3),eth(src=66:11:3e:c9:cf:2f,dst=33:33:ff:c9:cf:2f),eth_

↪→type(0x86dd),ipv6(frag=no), packets:0, bytes:0, used:never, actions:1,2

recirc_id(0),in_port(3),eth(src=66:11:3e:c9:cf:2f,dst=33:33:00:00:00:02),eth_

↪→type(0x86dd),ipv6(frag=no), packets:2, bytes:140, used:1399.137s, actions:1,2

...

To view both offloaded and nonoffloaded datapath flows, use the command below:

ovs-appctl dpctl/dump-flows

in_port(2),eth(src=00:15:4d:0e:08:a7,dst=66:11:3e:c9:cf:2f),eth_type(0x0806),␣

↪→packets:2, bytes:92, used:187.890s, actions:3

in_port(2),eth(src=00:15:4d:0e:08:a7,dst=66:11:3e:c9:cf:2f),eth_type(0x0800),␣

↪→packets:9, bytes:882, used:188.860s, actions:3

...

recirc_id(0),in_port(3),eth(src=66:11:3e:c9:cf:2f,dst=33:33:ff:c9:cf:2f),eth_

↪→type(0x86dd),ipv6(frag=no), packets:0, bytes:0, used:never, actions:1,2

recirc_id(0),in_port(3),eth(src=66:11:3e:c9:cf:2f,dst=33:33:00:00:00:02),eth_

↪→type(0x86dd),ipv6(frag=no), packets:2, bytes:140, used:1399.137s, actions:1,2

...

Note: type=offloaded is just an indication that a flow is handled by the TC datapath. This does not
guarantee that it has been offloaded to the SmartNIC, the TC commands shown next provides a much
better indication.

The nonoffloaded flows are present in the Open vSwitch kernel datapath. The offloaded flows are
present in hardware, and are configured by Open vSwitch via the Kernel’s TC subsystem. The kernel’s
view of these flows may be observed using the tc command:

tc -s filter show ingress dev <netdev>

filter protocol arp pref 1 flower

filter protocol arp pref 1 flower handle 0x1

dst_mac 66:11:3e:c9:cf:2f

src_mac 00:15:4d:0e:08:a7

eth_type arp

not_in_hw

action order 1: mirred (Egress Redirect to device eth1) stolen

index 1 ref 1 bind 1 installed 409 sec used 187 sec

Action statistics:

Sent 92 bytes 2 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b 0p requeues 0

cookie len 16 e053c4819648461a

filter protocol ip pref 2 flower

filter protocol ip pref 2 flower handle 0x1

dst_mac 66:11:3e:c9:cf:2f

(continues on next page)

www.corigine.com 49

(continued from previous page)

src_mac 00:15:4d:0e:08:a7

eth_type ipv4

in_hw

action order 1: mirred (Egress Redirect to device eth1) stolen

index 4 ref 1 bind 1 installed 409 sec used 188 sec

Action statistics:

Sent 882 bytes 9 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b 0p requeues 0

cookie len 16 b68ca7de9c465000

tc -s filter show ingress dev eth1

filter protocol arp pref 1 flower

filter protocol arp pref 1 flower handle 0x1

dst_mac 00:15:4d:0e:08:a7

src_mac 66:11:3e:c9:cf:2f

eth_type arp

not_in_hw

action order 1: mirred (Egress Redirect to device enp4s0np0) stolen

index 2 ref 1 bind 1 installed 409 sec used 187 sec

Action statistics:

Sent 56 bytes 2 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b 0p requeues 0

cookie len 16 5049f238734ef962

filter protocol ip pref 2 flower

filter protocol ip pref 2 flower handle 0x1

dst_mac 00:15:4d:0e:08:a7

src_mac 66:11:3e:c9:cf:2f

eth_type ipv4

in_hw

action order 1: mirred (Egress Redirect to device enp4s0np0) stolen

index 3 ref 1 bind 1 installed 409 sec used 188 sec

Action statistics:

Sent 882 bytes 9 pkt (dropped 0, overlimits 0 requeues 0)

backlog 0b 0p requeues 0

cookie len 16 3dae846e6b41a778

www.corigine.com 50

15 Using the DPDK Poll Mode Driver

15.1 Install Software

15.1.1 Install DPDK

The needed version of meson and ninja is vary for different version of DPDK. For example, the DPDK
v22.11 requires meson version above 0.53.2.

git clone https://github.com/DPDK/dpdk-stable.git

cd dpdk-stable

git checkout 22.11

meson build -Ddefault_library=shared

ninja -C build install

ldconfig

15.1.2 Environment Variable

This is needed for the install of pktgendpdk and ovsdpdk.

export PKG_CONFIG_PATH=/usr/local/lib64/pkgconfig

export LD_LIBRARY_PATH=/usr/local/lib64

15.1.3 Install Pktgen-DPDK

git clone https://github.com/pktgen/Pktgen-DPDK.git

cd Pktgen-DPDK

meson build

ninja -C build install

Note: The libpcap development package is needed if not installed yet.

www.corigine.com 51

15.1.4 Install OVS-DPDK

git clone https://github.com/openvswitch/ovs.git

cd ovs

./boot.sh

./configure --with-dpdk=shared CFLAGS="-DALLOW_EXPERIMENTAL_API"

make install

15.2 Configuration

15.2.1 Select Flower Firmware

The flower firmware should be selected using the script described in section Selecting the TC Offload
Firmware. The script should be called agilio-tc-fw-select.sh. To select the flower firmware, it
should be called with flowernext as its last parameter:

./agilio-tc-fw-select.sh <netdev> scan flower-next

Note: Replace <netdev>with themachine’s specific interface associated with the SmartNIC’s physical
port, which is expected to be something like ens4np0.

15.2.2 Configure SR-IOV

To configure Single Root I/O Virtualization (SRIOV) virtual functions, ensure that SRIOV is enabled in
the BIOS of the host machine. If SRIOV is disabled or unsupported by the motherboard/chipset being
used, the kernel message log will contain a PCI SR-IOV:-12 error when trying to create a VF.

Virtual functions can be allocated to a network interface by writing an integer to the sysfs file. For
example, to allocate 2 virtual functions to a SmartNIC with the BDF af:00.0:

modprobe vfio-pci enable_sriov=1 disable_idle_d3=1

dpdk-devbind.py -b vfio-pci af:00.0

echo 2 > /sys/bus/pci/devices/0000\:af\:00.0/sriov_numvfs

15.2.3 Configure Hugepages

echo 8192 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

www.corigine.com 52

15.3 Example for OVS Hardware Offload

15.3.1 Configure OVS-DPDK

For example, to create 2 virtual function representor ports to af:00.0:

ovs-vsctl set Open_vSwitch . other_config:dpdk-init=true

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-mem="4096,4096"

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra= \

"--vfio-vf-token=14d63f20-8445-11ea-8900-1f9ce7d5650d -a 0000:af:00.0,

↪→representor=[0-4] -l 0-7 -s 0xc0"

Note: Here two service cores must be configured for running the needed services.

Create an OVS bridge and add the interfaces: the representor of the PF, the representor of the 2 physical
ports and the representor of the 2 VFs.

Create an Open vSwitch bridge:

ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

Add representor of the PF af:00.0 to the bridge:

ovs-vsctl add-port br0 pf-rep -- set Interface pf-rep \

type=dpdk options:dpdk-devargs=0000:af:00.0,representor=[0]

Add representors of the 2 physical ports to the bridge:

ovs-vsctl add-port br0 phy-rep0 -- set Interface phy-rep0 \

type=dpdk options:dpdk-devargs=0000:af:00.0,representor=[1]

ovs-vsctl add-port br0 phy-rep1 -- set Interface phy-rep1 \

type=dpdk options:dpdk-devargs=0000:af:00.0,representor=[2]

Add representors of the 2 VFs to bridge:

ovs-vsctl add-port br0 vf-rep0 -- set Interface vf-rep0 \

type=dpdk options:dpdk-devargs=0000:af:00.0,representor=[3]

ovs-vsctl add-port br0 vf-rep1 -- set Interface vf-rep1 \

type=dpdk options:dpdk-devargs=0000:af:00.0,representor=[4]

The ovs-vsctl show command can be used to verify the config of the bridge:

ovs-vsctl show

d6091a27-2bab-4daa-b46b-276b77c883b3

Bridge br0

datapath_type: netdev

Port br0

(continues on next page)

www.corigine.com 53

(continued from previous page)

Interface br0

type: internal

Port pf-rep

Interface pf-rep

type: dpdk

options: {dpdk-devargs="0000:af:00.0,representor=[0]"}

Port phy-rep0

Interface phy-rep0

type: dpdk

options: {dpdk-devargs="0000:af:00.0,representor=[1]"}

Port phy-rep1

Interface phy-rep1

type: dpdk

options: {dpdk-devargs="0000:af:00.0,representor=[2]"}

Port vf-rep0

Interface vf-rep0

type: dpdk

options: {dpdk-devargs="0000:af:00.0,representor=[3]"}

Port vf-rep1

Interface vf-rep1

type: dpdk

options: {dpdk-devargs="0000:af:00.0,representor=[4]"}

ovs_version: "3.0.90"

15.3.2 Configure Flow Rules

ovs-ofctl del-flows br0

ovs-ofctl add-flow br0 in_port=vf-rep0,action=output:vf-rep1

ovs-ofctl add-flow br0 in_port=vf-rep1,action=output:vf-rep0

15.3.3 Configure Pktgen-DPDK

pktgen --lcores 10-12 -n 4 -a af:08.0 -a af:08.1 --file-prefix pktgen \

--vfio-vf-token=14d63f20-8445-11ea-8900-1f9ce7d5650d -- -P -m "[11].0,[12].1"

set 0 src ip 192.168.0.1/24

set 0 dst ip 192.168.0.2

set 1 src ip 192.168.0.2/24

set 1 dst ip 192.168.0.1

start all

Packets should now be able to flow between the VFs.

www.corigine.com 54

15.3.4 Check Flow Offload

The view of Open vSwitch for offloaded and nonoffloaded flows can be seen using ovs-appctl:

ovs-appctl dpctl/dump-flows

www.corigine.com 55

16 Using the DPDK vDPA

vDPA is a virtual machine virtionet dataplane acceleration framework that uses the vhostuser interface
on the control plane to offload the data plane to the NIC hardware via DPDK. Compared to SRIOV, VMs
accessed by vDPA can realize hot migration of VMs while meeting virtionet data plane acceleration.

Corigine provides a vDPA solution that includes the following features:

• For host side, support OVSDPDK acceleration and RTE flow rules offload

• For VM side, support DPDK acceleration

• For VirtIO device side, based on split queue framework of VirtIO v1.0, the features supported are
as follows:

www.corigine.com 56

– VHOST_F_LOG_ALL(26)

– VHOST_USER_F_PROTOCOL_FEATURES(30)

* VHOST_USER_PROTOCOL_F_LOG_SHMFD(1)

* VHOST_USER_PROTOCOL_F_BACKEND_REQ(5)

* VHOST_USER_PROTOCOL_F_BACKEND_SEND_FD(10)

* VHOST_USER_PROTOCOL_F_HOST_NOTIFIER(11)

– VIRTIO_F_VERSION_1(32)

– VIRTIO_F_IN_ORDER(35)

– VIRTIO_F_NOTIFICATION_DATA(38)

16.1 Supported Products

The following table shows Agilio SmartNIC products that support vDPA.

Supported Agilio product Supported port speeds

CX 2x25G 2x10G
2x25G
1x10G + 1x25G

CX 2x25G (v2) 2x10G
2x25G
1x10G + 1x25G

16.2 Software Dependency

The following table shows the currently adapted software and the corresponding version.

Software Version

QEMU 7.1.0 (Customization)

DPDK 23.07 (Customization)

Firmware 23.10 (Customization)

www.corigine.com 57

16.3 Software Installation

16.3.1 Installing QEMU

Based on QEMU 7.1.0, the necessary VIRTIO_F_IN_ORDER and VIRTIO_F_NOTIFICATION_DATA
VirtIO features are added. Contact smartnicsupport@corigine.com to acquire customized QEMU soft
ware.

cd qemu

./configure

make install

16.3.2 Installing DPDK

Based on DPDK 23.07, the necessary driver support of vDPA is added and examples/vdpa instances
are required. Contact smartnicsupport@corigine.com to acquire customized DPDK software.

cd dpdk

meson build -Dexamples=vdpa -Ddefault_library=shared

ninja -C build install

ldconfig

Note: In order to enable the best NIC performance, it is recommended to install DPDK 20.11 LTS and
later in the VM.

16.3.3 Setting Environment Variable and Installing Pktgen-DPDK, OVS-DPDK,
Firmware

Refer to Using the DPDK Poll Mode Driver . PktgenDPDK is only installed in the VM according to
demand.

16.4 Software Configuration

16.4.1 Configuration Sequence

As the dependencies between the software parts of DPDK vDPA solution, it is recommended to configure
them in the following order:

• Enable IOMMU (x86_64) or SMMU (ARM) in the BIOS

• Configure SRIOV, hugepage, NUMA affinity

• Configure firmware

• Configure OVSDPDK, flow rules

www.corigine.com 58

mailto:smartnic-support@corigine.com
mailto:smartnic-support@corigine.com

• Configure vDPA instance

• Configure VM

16.4.2 Loading Flower Firmware and Configuring SR-IOV, Hugepages, OVS-
DPDK, Flow Rules

Refer to Using the DPDK Poll Mode Driver .

16.4.3 Configuring vDPA Instance

The vDPA instance is used to implement a vDPA control plane, which interacts with the virtual machine
via vhostuser sockets for control plane messages.

dpdk-vdpa -a <vf_pci>,class=vdpa --vfio-vf-token <token> -- -i --client

create <unix_socket> <vf_pci>

Note:

• <vf_pci> is the BDF ID of the VF passthrough to the VM, e.g. 0000:01:00.5.

• <token> is a unique identifier in UUID format, e.g. 14d63f20844511ea89001f9ce7d5650d,
which needs to match the token in the OVS configuration.

• <unix_socket> is socket descriptor, e.g. /tmp/socket_1, which needs to match the socket in the
VM configuration.

Caution: In order to enable the best NIC performance, it is common to use the vDPA instance side
as the client side of the socket.

16.4.4 Configuring VM

The following points should be noted during VM configuration:

• Ensure that the VM is created with qemusystemx86_64 compiled with the corresponding QEMU
version.

• Add a vhostuser interface to the VM as the server side of the socket, making sure to set
page-per-vq=on.

• In order to enable the best NIC performance, it is recommended to set rx_queue_size and
tx_queue_size of the vhostuser interface to 1024.

www.corigine.com 59

16.5 Configuration Examples

16.5.1 Configuring the vDPA Instance

Run the following command:

dpdk-vdpa -a 0000:01:00.4,class=vdpa --vfio-vf-token \

14d63f20-8445-11ea-8900-1f9ce7d5650d -- -i --client

create /tmp/vhost-user-0 0000:01:00.4

16.5.2 Configuring the VM

Method 1: Run the following commands in QEMU:

/root/vdpa/qemu/build/x86_64-softmmu/qemu-system-x86_64 \

-object memory-backend-file,id=ram-node0,size=2G,mem-path=/dev/hugepages,

↪→share=on \

-cpu host \

-smp 9 \

-numa node,memdev=ram-node0 -mem-prealloc \

-net user,hostfwd=tcp::10022-:22 \

-net nic \

-m 4096 \

-enable-kvm --nographic \

-monitor telnet:127.0.0.1:55555,server,nowait \

-drive file=/home/centos1.qcow2,if=virtio \

-chardev socket,id=char0,path=/tmp/v0,server=on \

-netdev type=vhost-user,id=vdpa0,chardev=char0,vhostforce=on,queues=8 \

-device virtio-net-pci,netdev=vdpa0,mac=fe:1b:ac:05:a5:22,page-per-vq=on,rx_

↪→queue_size=1024,tx_queue_size=1024

Method 2: Configure vhostuser interface in libvirt VM’s xml file. Edit the first line, such that:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

Add the following lines to the xml file:

<qemu:commandline>

<qemu:arg value='-chardev'/>

<qemu:arg value='socket,id=char0,path=/tmp/vhost-user-0,server=on'/>

<qemu:arg value='-netdev'/>

<qemu:arg value='type=vhost-user,id=vdpa,chardev=char0,vhostforce=on'/>

<qemu:arg value='-device'/>

<qemu:arg value='virtio-net-pci,netdev=vdpa,mac=fe:1b:ac:05:a5:22,page-per-

↪→vq=on,rx_queue_size=1024,tx_queue_size=1024'/>

</qemu:commandline>

www.corigine.com 60

17 Appendix A: Corigine Repositories

All the software mentioned in this document can be obtained via the official Corigine repositories. Please
find instructions below on how to enable access to the aforementioned repositories from your respective
Linux distributions.

17.1 Importing GPG-Key

For RHEL and CentOS, add the Corigine GPGkey:

rpm --import https://download.corigine.com.cn/public/Corigine.pub

For Ubuntu based systems, add the Corigine GPGkey:

curl -fsSLo /usr/share/keyrings/corigine-archive-keyring.gpg \

https://download.corigine.com.cn/public/Corigine.gpg

17.2 Configuring Repositories

For RHEL 7 and CentOS 7, the RPM repository can be added:

yum-config-manager --add-repo \

https://download.corigine.com.cn/public/corigine.repo

For RHEL 8+ and CentOS 8+, the RPM repository can be added:

dnf config-manager --add-repo \

https://download.corigine.com.cn/public/corigine.repo

For Ubuntu based systems:

mkdir -p /etc/apt/sources.list.d

KEY=/usr/share/keyrings/corigine-archive-keyring.gpg

REPOLINK=https://download.corigine.com.cn/public/apt

OUPUTPATH=/etc/apt/sources.list.d/corigine.list

echo "deb [arch=all signed-by=${KEY}] ${REPOLINK} stable main" > ${OUPUTPATH}

apt-get update

www.corigine.com 61

18 Appendix B: Red Hat Repositories

TC offload is only available in Open vSwitch version 2.8, with additional offloads enabled thereafter.
The standard Red Hat Subscription only enables Open vSwitch version 2.5. For this reason, an addi
tional subscription may be required to enable repositories that contain a newer version of Open vSwitch.
Please consult with Red Hat directly to determine your subscription needs. More information is available
at the official Red Hat documentation page.

Note: The Red Hat documentation with regards to enabling the specific repositories is regarded to be
authoritative. The steps below are for illustrative purposes only.

Register the system with subscription-manager:

subscription-manager register

List all available pools:

subscription-manager list --all --available

Identify the IDs of the license pools that provide the following products:

• Red Hat Enterprise Linux

• Red Hat Enterprise Linux Fast Datapath

This can be done by using the --matches flag:

subscription-manager list --available --matches="Red Hat Enterprise

Linux Fast Datapath"

Attach the system to these pools (by using the correct license pool IDs):

subscription-manager attach --pool=${RHEL_PACKAGE_POOL_ID}

Enable the Fast Datapath repository for the relevant version of RHEL:

RHEL 7 and CentOS 7:

subscription-manager repos --enable rhel-7-fast-datapath-rpms

RHEL 8 and CentOS 8:

subscription-manager repos --enable fast-datapath-for-rhel-8-x86_64-rpms

www.corigine.com 62

https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/rhsm/index

19 Appendix C: Installing the OutofTree
NFP Driver

The NFP driver can be installed via the Corigine repository, or built from source, depending on your
requirements.

Note: The OutofTree driver currently does not provide support for TC firmware on RHEL/CentOS 7.

19.1 Install Driver via Corigine Repository

Please refer to Appendix A: Corigine Repositories on how to configure the Corigine repository applicable
to your distribution. When the repository has been successfully added, install the NFP driver package
using the commands below.

19.1.1 RHEL 8 and CentOS 8

When installing the NFP Dynamic Kernel Module Support (DKMS) driver package, DKMS is required
as a dependency. On RHEL based systems, DKMS is provided in the EPEL repository. If this is not
installed, it must first be done before installing the NFP driver package. The EPEL repository can be
installed using:

dnf install epel-release

Ensure that the correct kerneldevelopment package is installed that matches the current kernel version.
The following commandwill check the kerneldevel version and, if needed, install the correct kerneldevel
package:

dnf install kernel-devel-$(uname -r)

Installing the driver from the Corigine repository should automatically install all dependencies:

dnf search agilio-nfp-driver-dkms

dnf install agilio-nfp-driver-dkms

www.corigine.com 63

19.1.2 Ubuntu

apt-cache search agilio-nfp-driver-dkms

apt-get install agilio-nfp-driver-dkms

19.1.3 Kernel Changes

Take note that installing the DKMS driver will only install it for the currently running kernel. When you
upgrade the installed kernel it may not automatically update the nfp module to use the version in the
DKMS package.In kernel versions older than v4.16, the MODULE_VERSION parameter of the intree
module was not set, which causes DKMS to pick the module with the highest srcversion hash (https:
//github.com/dell/dkms/issues/14). The work around for this is to add a --force flag to the DKMS install
in the package install step, but this will not trigger on a kernel upgrade. To work around this issue, boot
into the new kernel and then reinstall the agilio-nfp-driver-dkms package.

This should not be a problem when upgrading from kernels v4.16 and newer as the MODULE_VERSION
has been added and the DKMS version check should work properly. It’s not possible to determine which
nfp.ko file was loaded by only relying on information provided by the kernel. However, it’s possible to
confirm that the binary signature of a file on disk and the module loaded in memory is the same.

To confirm that the module in memory is the same as the file on disk, compare the srcversion tag.
The inmemory module’s tag is at /sys/module/nfp/srcversion. The default ondisk version can
be queried with modinfo:

cat /sys/module/nfp/srcversion # In-memory module

modinfo nfp | grep "^srcversion:" # On-disk module

If these tags are in sync, the filename of the module provided by a modinfo query will identify the origin
of the module:

modinfo nfp | grep "^filename:"

If these tags are not in sync, there are likely conflicting copies of the module on the system: the
initramfs may be out of sync or the module dependencies may be inconsistent.

The intree kernel module is usually located at the following path (please note, this module may be
compressed with a .xz extension):

/lib/modules/$(uname -r)/kernel/drivers/net/ethernet/netronome/nfp/nfp.ko

The DKMS module is usually located at the following path:

/lib/modules/$(uname -r)/updates/dkms/nfp.ko

To ensure that the outoftree driver is correctly loaded instead of the intree module, the following com
mands can be run:

mkdir -p /etc/depmod.d

echo "search nfp * extra updates" > /etc/depmod.d/netronome.conf

(continues on next page)

www.corigine.com 64

https://github.com/dell/dkms/issues/14
https://github.com/dell/dkms/issues/14

(continued from previous page)

depmod -a

rmmod nfp; modprobe nfp

update-initramfs -u

19.2 Building from Source

Driver sources for Corigine Network Flow Processor devices, including the NFP4000 and NFP6000
models can be found at: https://github.com/Corigine/nfpdrvkmods.

19.2.1 RHEL 8 and CentOS 8 Dependencies

dnf install -y kernel-devel-$(uname -r)

dnf groupinstall -y "Development Tools"

19.2.2 Ubuntu Dependencies

apt-get update

apt-get install -y linux-headers-$(uname -r) build-essential libelf-dev

19.2.3 Clone, Build and Install

git clone https://github.com/Corigine/nfp-drv-kmods.git

cd nfp-drv-kmods

make

make install

depmod -a

www.corigine.com 65

https://github.com/Corigine/nfp-drv-kmods

20 Appendix D: Working with Board
Support Package

The Corigine Board Support Package (BSP) provides infrastructure software and a development envi
ronment for managing NFP based platforms.

20.1 Install Software from Corigine Repository

Please refer to Appendix A: Corigine Repositories on how to configure the Corigine repository applicable
to your distribution. When the repository has been successfully added, install the BSP package using
the commands below.

RHEL 7 and CentOS 7:

yum list available | grep nfp-bsp

yum install nfp-bsp

reboot

RHEL 8 and CentOS 8:

dnf list available | grep nfp-bsp

dnf install nfp-bsp

reboot

Ubuntu:

apt-cache search nfp-bsp

apt-get install nfp-bsp

20.2 Install Software from DEB/RPM Package

20.2.1 Obtain Software

The latest BSP packages can be obtained at the downloads area of the Corigine Support site (https:
//www.corigine.com/DPUDownload.html).

www.corigine.com 66

https://www.corigine.com/DPUDownload.html
https://www.corigine.com/DPUDownload.html

20.2.2 Install the Prerequisite Dependencies

RHEL and CentOS Dependencies

The libftdi package is required to install BSP software, it can be installed from the EPEL repository.
Install the EPEL repository by running:

yum install -y epel-release

Then install the libftdi package by running:

yum install -y libftdi

Ubuntu Dependencies

To install the BSP package dependencies on Ubuntu, run:

apt-get install -y libjansson4 libftdi

20.2.3 NFP BSP Package

Install the NFP BSP package provided by Corigine Support.

RHEL 7 and CentOS 7 Install:

yum install -y nfp-bsp*.rpm

RHEL 8 and CentOS 8 Install:

dnf install -y nfp-bsp*.rpm

Ubuntu Install:

dpkg -i nfp-bsp*.deb

20.3 Using BSP Tools

20.3.1 Enable CPP Access

The NFP has an internal Command Push/Pull (CPP) bus that allows debug access to the SmartNIC
internals. CPP access allows user space tools raw access to chip internals and is required to enable
the use of most BSP tools. Only the outoftree (OOT) driver allows CPP access.

Follow the steps from Install Driver via Corigine Repository to install the OOT NFP driver. After the nfp
module has been built, load the driver with CPP access:

www.corigine.com 67

depmod -a

rmmod nfp

modprobe nfp nfp_dev_cpp=1

To persist this option across reboots, several options are available; the distribution specific documenta
tion, which can be found at RHEL, CentOS and Ubuntu, will detail that process more thoroughly. Care
must be taken that the settings are also applied to any initramfs images generated.

20.3.2 Configure Media Settings

Alternatively to the process described in Configuring Interface Media Mode, BSP tools can be used to
configure the port speed of the SmartNIC using the following commands. Note, a reboot is still required
for changes to take effect.

CX 2x25GbE - AMDA0099

To set the port speed of the CX 2x25GbE, the following commands can be used:

Set port 0 and port 1 to 10G mode:

nfp-media phy1=10G phy0=10G

Set port 1 to 25G mode:

nfp-media phy1=25G+

To change the FEC settings of the 2x25GbE, the following commands can be used:

nfp-media --set-aneg=phy0=[S|A|I|C|F] --set-fec=phy0=[A|F|R|N]

Where the parameters for each argument are:

--set-aneg=:

S
search Search through supported modes until link is found. Only one side should be doing this.
It may result in a mode that can have physical layer errors depending on SFP type and what the
other end wants. Long DAC cables with no FEC will have physical layer errors.

A
auto Automatically choose mode based on speed and SFP type.

C
consortium Consortium 25G autonegotiation with link training.

I
IEEE IEEE 10G or 25G autonegotiation with link training.

F
forced Mode is forced with no autonegotiation or link training.

--set-fec=:

www.corigine.com 68

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9
https://docs.centos.org/en-US/docs/
https://help.ubuntu.com/

A
auto Automatically choose FEC based on speed and SFP type.

F
Firecode BASER Firecode FEC compatible with 10G.

R
ReedSolomon ReedSolomon FEC new for 25G.

N
none No FEC is used.

CX 1x40GbE - AMDA0081

Set port 0 to 40G mode:

nfp-media phy0=40G

Set port 0 to 4x10G fanout mode:

nfp-media phy0=4x10G

CX 2x40GbE - AMDA0097

Set port 0 and port 1 to 40G mode:

nfp-media phy0=40G phy1=40G

Set port 0 to 4x10G fanout mode:

nfp-media phy0=4x10G

For mixed configuration the highest port must be in 40G mode e.g.:

nfp-media phy0=4x10G phy1=40G

www.corigine.com 69

21 Appendix E: Upgrading the Kernel

The minimum recommended Linux distribution versions are those provided in supported releases of
distributions. As a guide they are as follows:

Operating System Kernel Version

CentOS 7.6 3.10.0957

CentOS 8.0 4.18

Ubuntu 18.04 LTS 4.15

21.1 RHEL

Only kernel packages released by Red Hat which are installable as part of the distribution installation
and upgrade procedure are supported.

21.2 CentOS

The CentOS package installer yum will manage an update to the supported kernel version. The com
mand yum install kernel-${VERSION} updates the kernel for CentOS. First search for available
kernel packages then install the desired release:

yum list --showduplicates kernel

kernel.x86_64 3.10.0-862.el7 base

kernel.x86_64 3.10.0-862.2.3.el7 updates

kernel.x86_64 3.10.0-862.3.2.el7 updates

yum install kernel-3.10.0-862.el7

21.3 Ubuntu

If desired, alternative kernels may be installed. For example, at the time of writing, v4.18 is the newest
stable kernel.

www.corigine.com 70

21.3.1 Acquire packages

BASE=http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.18/

HEADERS=linux-headers-4.18.0-041800

IMAGE=linux-image-unsigned-4.18.0-041800

MODULES=linux-modules-4.18.0-041800-generic

wget \

$BASE/${HEADERS}_4.18.0-041800.201808122131_all.deb \

$BASE/${HEADERS}-generic_4.18.0-041800.201808122131_amd64.deb \

$BASE/${IMAGE}-generic_4.18.0-041800.201808122131_amd64.deb \

$BASE/${MODULES}_4.18.0-041800.201808122131_amd64.deb

21.3.2 Install packages

HEADERS=linux-headers-4.18.0-041800

IMAGE=linux-image-unsigned-4.18.0-041800-generic

MODULES=linux-modules-4.18.0-041800-generic

dpkg -i \

${HEADERS}_4.18.0-041800.201808122131_all.deb \

${HEADERS}-generic_4.18.0-041800.201808122131_amd64.deb \

${IMAGE}_4.18.0-041800.201808122131_amd64.deb \

${MODULES}_4.18.0-041800.201808122131_amd64.deb

www.corigine.com 71

22 Appendix F: Updating Kernel Boot
Parameters

Note: In order to enable VFs to be bound to the vfio-pci driver such that they may be utilized by
VMs, Input/Output Memory Management Unit (IOMMU) must be enabled in both the BIOS of the host
machines, as well as the kernel.

22.1 RHEL and CentOS Grub Config

grubby --update-kernel=ALL --args="intel_iommu=on"

reboot

22.2 Ubuntu Grub Config

sed -i \

's/#*GRUB_CMDLINE_LINUX_DEFAULT.*/GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"/g' \

/etc/default/grub

update-grub2

reboot

www.corigine.com 72

23 Appendix G: Upgrading TC Firmware

The preferred method of installing and upgrading Agilio firmware is via the distribution repositories. The
minimum recommended versions are those provided in GA releases of distributions. As a guide they
are as follows:

Operating System Firmware package version

CentOS 7.6 20180911-69.git85c5d90.el7

CentOS 8.0 20190111-92.gitd9fb2ee6.el8

Ubuntu 18.04 LTS 1.173

Corigine provides firmware packages with newer features as outoftree repositories. The corresponding
installation packages can be obtained from Corigine Support (smartnicsupport@corigine.com) if access
to the repositories is not available.

23.1 Installing Updated TC Firmware via the Corigine Repository

Please refer to Appendix A: Corigine Repositories on how to configure the Corigine repository applicable
to your distribution. When the repository has been successfully added, install the agilioflowerapp
firmware package using the commands below.

In RHEL and CentOS:

yum install agilio-flower-app-firmware

In Ubuntu 18.04 LTS:

apt-get install agilio-flower-app-firmware

23.2 Installing Updated TC Firmware from Package Installations

The latest firmware can be obtained at the downloads area of the Corigine Support site (https://www.
corigine.com/DPUdownload.html). Install the packages provided by Corigine Support using the com
mands below.

In RHEL and CentOS:

yum install -y agilio-flower-app-firmware-*.rpm

In Ubuntu 18.04 LTS:

www.corigine.com 73

mailto:smartnic-support@corigine.com
https://www.corigine.com/DPUdownload.html
https://www.corigine.com/DPUdownload.html

dpkg -i agilio-flower-app-firmware-*.deb

23.3 Select Updated TC Firmware

Once installed, the updated TC firmware should be selected using the script described in section Se
lecting the TC Offload Firmware. The script should be called agilio-tc-fw-select.sh. To select
the updated TC firmware, it should be called with flowernext as its last parameter:

./agilio-tc-fw-select.sh <netdev> scan flower-next

Note: Replace <netdev>with themachine’s specific interface associated with the SmartNIC’s physical
port, which is expected to be something like ens4np0.

Once selected, the driver should be reloaded to use the new firmware:

rmmod nfp; modprobe nfp

www.corigine.com 74

24 Appendix H: Offloadable Flows

Flows may be offloaded to hardware if they meet the criteria described in this section.

Note: The maximum number of flows that can be offloaded in RHEL 7.5/7.6 and Ubuntu 18.04 is 128k.
This has been increased to 480k in kernel 4.20 and has been backported to the 4.18based kernel
provided by RHEL 8.0.

24.1 Matches

A flow may be offloaded if it matches only on the following fields:

Meta
data

Input Port

Layer 2 Ethernet: Type, Addresses

VLAN: Outermost ID, Priority

Layer 3 IPv4: Addresses, Protocol, TTL, TOS, Frag
IPv6: Addresses, Protocol, Hop Limit, TOS, Frag

Layer 4 TCP: Ports, Flags
UDP: Ports
SCTP: Ports

Tunnel ID
IPv4: Outer Address
UDP: Outer Destination Port

www.corigine.com 75

24.2 Actions

A flow may be offloaded if:

1. The input port of the flow is:

a. A physical port or VF on an Agilio SmartNIC or;

b. A supported tunnel vport whose ingress packets are received on a physical port on an Agilio
SmartNIC and whose egress action is to a VF port on an Agilio SmartNIC.

2. If present, the output actions output to:

a. A physical port or VF on the same Agilio SmartNIC as the input port;

b. A tunnel vport whose egress packets are sent on a physical port of the same Agilio SmartNIC
as the input port.

3. Only the input port or output ports may be a tunnel vport, not both.

For information on supported tunnel vports please see Appendix J: Overlay Tunneling.

Offloading of flows that output to more than one port is supported when using OVS v2.10+, as found in
the Fast Datapath repository for RHEL 7. Otherwise only flows that output to at most one port may be
offloaded.

Other than output and the implicit drop action, flows using the following actions may be offloaded:

1. Push and Pop VLAN

2. Masked and Unmasked Set

Flows that include a masked set of any of the following fields may be offloaded:

Layer 2 Ethernet: Type, Addresses
VLAN: ID, Priority

Layer 3 IPv4: Addresses IPv4: TTL, TOS
IPv6: Addresses IPv6: Hop Limit, priority

Layer 4 TCP: Ports
UDP: Ports

Flows that include an unmasked set of any of the following fields may be offloaded:

Tunnel ID IPv4: Outer Address
UDP: Outer Destination Port

www.corigine.com 76

25 Appendix I: Quality of Service

Offload of OVS Quality of Service (QoS) rate limiting is supported when applied to VFs.

Minimum supported versions:

BitRate Limiting

Kernel 5.2

Firmware AOTC2.10.A.38

OVS 2.12

RHEL 7 Not Supported

RHEL 8 8.2

Ubuntu 20.04

25.1 Configuring Quality of Service (QoS) Rate Limiting with OVS

OVS has support for using policing to enforce an ingress rate limit in kilobits per second. For example,
to set a rate limit of 1000 kbps with of burst of 100 kbps on enp3s0v0, use these commands to set the
rate limit for the VF corresponding to VF representor eth4:

ovs-vsctl set interface eth4 ingress_policing_rate=1000

ovs-vsctl set interface eth4 ingress_policing_burst=100

The following command may be used to check the current rate limit configuration in OVSDB:

ovs-vsctl list interface eth4 | grep ingress_policing

ingress_policing_burst: 100

ingress_policing_rate: 1000

The following commandmay be used to check the current rate limit configuration in the kernel and offload
hardware:

tc -s -d filter show dev eth4 ingress

eth4 ingress filter protocol

all pref 1 matchall chain 0

filter protocol all pref 1 matchall

chain 0 handle 0x1 in_hw (rule hit 2)

action order 1: police 0x2 rate 1Mbit burst 1600b mtu 64Kb

action drop/continue overhead 0b linklayer unspec

(continues on next page)

www.corigine.com 77

(continued from previous page)

ref 1 bind 1 installed 226

sec used 0 sec Action

statistics:

Sent 260 bytes 4 pkt (dropped 0, overlimits 0 requeues 0)

Sent software 112 bytes 2 pkt

Sent hardware 148 bytes pkt backlog 0b 0p requeues0

www.corigine.com 78

26 Appendix J: Overlay Tunneling

26.1 Introduction

OVSTC supports offloading tunnels. The supported tunnel types and the corresponding minimum ver
sions of the various components are documented below. The OVS documentation can be referred to
for more detailed information on how OVS works with tunnels, and this section will only provide a short
summary of the two configurations for which offloading is supported.

26.1.1 Method 1: IP-on-the-Port

This is the simplest method, where the tunnel IP is placed on the physical port, and the port itself is
not placed on the OVS bridge. The OVS bridge contains the VF representor ports, as well as a tunnel
port. OVS uses Linux routing to be able to map the tunnel to the correct physical port, and uses this
information to generate a datapath rule which is offloaded.

The configuration of a tunnel port will vary slightly for the different port types, refer to the specific tunnel
sections below for this section a shortened format will be use to explain the concept. The steps to
configure this are as follows.

Configure the port IP address:

ip addr add dev <phy0> <local_tun_ip/mask>

ip link set dev <phy0> up

Configure the bridge:

ovs-vsctl add-br br0

ovs-vsctl add-port br0 vtep -- <vtep specific settings...>

ovs-vsctl add-br br0 <vf0_repr>

This is all that is required to configure the underlay for successful tunneling. A simple test would be to
add an IP to the VF netdev (or interface in the VM if that is used), and ping a VM/netdev on the remote
machine:

ip addr add dev <vf0_netdev> <local_vm_ip/mask>

ping <remote_vm_ip>

www.corigine.com 79

26.1.2 Method 2: IP-on-the-Bridge

This is the method that is typically configured by OpenStack, and usually involves two bridges. As the
name suggests the tunnel IP in this case is placed on the bridge port. A common convention is to have
the two bridges called br-ex and br-int. br-ex will have the physical port added to it, and the IP
will be placed on the br-ex port. br-int will be configured exactly the same as br0 in Method 1:
IPonthePort.

Configure bridge br-ex:

ovs-vsctl add-br br-ex

ovs-vsctl add-port br-ex <phy0>

ip addr add dev br-ex <local_tun_ip/mask>

ip link set dev br-ex up

Configure bridge br-int:

ovs-vsctl add-br br-int

ovs-vsctl add-port br-int vtep -- <vtep specific settings...>

ovs-vsctl add-br br-int <vf0_repr>

At this point the configuration is done, and can also be verified as explained inMethod 1: IPonthePort.

Note: For best behavior it is important that action=NORMAL is used on br-ex. Any more specific
rules are usually applied to br-int.

26.2 VXLAN Tunnels

Minimum supported versions:

Kernel 4.15

Firmware 0AOTC28A.5642

OVS 2.8

RHEL 7 7.5

RHEL 8 8.0

Ubuntu 18.04 LTS

Offload of VXLAN Tunnels is supported when using UDP port 4789.

Add a VXLAN VTEP to an OVS bridge (in this case br0, assuming br0 already has an attached SRIOV
VF representor) as follows:

www.corigine.com 80

ovs-vsctl add-port br0 vxlan0 -- set interface vxlan type=vxlan \

options:local_ip=<local_ip> options:remote_ip=<remote_ip> \

options:key=<tunnel_key>

The resultant flow can be seen by querying the VF representor’s TC filter (with remote and local underlay
IPs on subnet 10.0.0.0/24 and a tunnel key = 100):

tc -s filter show ingress dev eth1

...

in_hw in_hw_count 1

action order 1: tunnel_key set

src_ip 10.0.0.2

dst_ip 10.0.0.1

key_id 100

...

26.3 GENEVE Tunnels

Minimum supported versions:

Without Options With Options

Kernel 4.16 4.19

Firmware AOTC2.9.A.16 AOTC2.9.A.31

OVS 2.8 2.11

RHEL 7 7.6 7.7

RHEL 8 8.0 8.0

Ubuntu 18.10 19.04

Offload of GENEVE Tunnels is supported when using UDP port 6801.

A GENEVE VTEP may be added to an OVS bridge in the same manner as a VXLAN VTEP:

ovs-vsctl add-port br0 geneve0 -- set interface geneve type=geneve \

options:local_ip=<local_ip> options:remote_ip=<remote_ip> \

options:key=<tunnel_key>

The successfully offloaded flows can be queried in the VF representors’ TC filter as per the example
given for VXLAN.

www.corigine.com 81

26.4 GRE Tunnels

Minimum supported versions:

Kernel 5.3

Firmware 0AOTC28A.5642

OVS 2.11

RHEL 7 Not supported

RHEL 8 8.2

Ubuntu 19.10

A GRE VTEP may be added to an OVS bridge in the same manner as a VXLAN or GENEVE VTEP:

ovs-vsctl add-port br0 gre0 -- set interface gre0 type=gre \

options:local_ip=<local_ip> options:remote_ip=<remote_ip> \

options:key=<tunnel_key>

The successfully offloaded flows can be queried in the VF representors’ TC filter as per the example
given for VXLAN.

26.5 IPv6 on the Underlay

Minimum supported versions:

Kernel 5.10

Firmware AOTC2.14.A.6

OVS 2.11

RHEL 7 Not supported

RHEL 8 Not released yet

Ubuntu Not released yet

All the tunnel types mentioned above supports IPv4 since their first introduction. Support for using IPv6
has been added later as indicated in the version box above. This is valid for all the supported tunnel
types mentioned so far in this section. The way to configure this is exactly the same as with IPv4, the
only difference is that <local_ip> and <remote_ip> used in the example snippets are now allowed to be
IPv6.

www.corigine.com 82

27 Appendix K: Link Aggregation (LAG)

27.1 Using Native Open vSwitch LAG

Minimum supported versions:

Kernel 4.13

Firmware 0AOTC28A.5642

OVS 2.8

RHEL 7 7.5

RHEL 8 8.0

Ubuntu 18.04 LTS

Flows resulting from the following modes could be accelerated:

OVS Bonds Modes Active Backup Balance SLB Balance TCP

Configuring a LAG in OVS in active-backup or balance-slb modes results in flows that are of
floadable.

It should be noted that by default OVS sends packets to the LOCAL port for each LAG. This results in
flow rules that include actions with output to the LOCAL port. Such flows cannot be accelerated by Agilio
OVS. To prevent this from occurring, and to achieve offload, packets must not be sent to the LOCAL
port. This can be achieved with the command:

ovs-ofctl -O Openflow13 mod-port lagbr0 lagbr0 no-forward

Furthermore, configuring a LAG in balance-tcp mode will result in flows that are offloadable unless
recirculation has been disabled. This can be achieved using the following command:

ovs-appctl dpif/set-dp-features lagbr0 recirc false

It should be noted that turning off recirculation leads to exact match datapath entries (matching on L2,
L3 and L4) being installed. This can be seen when running the following command:

ovs-appctl dpctl/dump-flows

Expected output from the above:

www.corigine.com 83

in_port(10),eth(src=12:23:34:45:56:67,dst=67:56:45:34:23:12),eth_type(0x0800),

↪→ipv4(src=10.10.10.10,dst=10.10.10.20,proto=6,frag=no),tcp(src=1000,dst=2000),␣

↪→packets:0, bytes:0, used:never, actions:6,7

This exact matching behavior leads to flow explosion, i.e. OVS will install an entry for every unique (L2,
L3 or L4) packet. This in turn could lead to performance degradation, especially when using many flows
(100K and more).

Finally, OVS LAG is based on the NORMAL rule; links will not be aggregated when the LAG bridge does
not contain a NORMAL rule. Should match/actions be required, an additional bridge (named br0 in this
example) is required on which the match/actions are performed, allowing the LAG bridge to only have
the NORMAL rule. This additional bridge can be connected to the LAG bridge using a patch port.

27.2 Configuring Linux Bond LAGs

Minimum supported versions:

Kernel 4.18

Firmware AOTC2.9.A.16

OVS 2.10

RHEL 7 7.7

RHEL 8 8.0

Ubuntu 18.10

It is possible to configure standard Linux bonds and add them to an OVS bridge for offloading. The
process to create and use these LAGs are shown next.

First create a bond LAG device:

ip link add lag0 type bond

Add the physical port representor ports to the LAG:

ip link set dev ens1np0 master lag0

ip link set dev ens1np1 master lag0

If they need to be removed from the LAG:

ip link set dev ens1np0 nomaster

ip link set dev ens1np1 nomaster

Information about a Linux LAG can be obtained by:

cat /proc/net/bonding/lag0

www.corigine.com 84

Example of the output from the above command:

Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 0

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: ens1np0

MII Status: up

Speed: 40000 Mbps

Duplex: full

Link Failure Count: 0

Permanent HW addr: 00:15:4d:13:50:32

Slave queue ID: 0

Slave Interface: ens1np1

MII Status: up

Speed: 40000 Mbps

Duplex: full

Link Failure Count: 0

Permanent HW addr: 00:15:4d:13:50:33

Slave queue ID: 0

Not all bond LAGmodes are supported for offloading. The currently supported modes are activebackup,
balancexor and 802.3ad.

Bond modes:

Bond mode
number

Bond mode
name

Expected
offload

Short description

0 balancerr No Roundrobin policy

1 active
backup

Yes Only 1 port active, fallback to other port of link goes
down

2 balancexor Yes Hashed balancing. Hashed headers can be set as
subsettings

3 broadcast No Duplicate traffic to all ports

4 802.3ad Yes Basically mode 2 with LACP control plane added on
top

5 balancetlb No Balance according to load transmit side (relative to
port speed)

6 balancealb No Similar tomode 5, but also take the receiver side load
into consideration

www.corigine.com 85

See below for more info configuring each mode.

Note: All lowerdevices need to be removed from a bond LAG device before the mode can be changed.

27.2.1 Active-backup

The active-backup mode will send traffic on only one of the ports that are aggregated in the LAG.
This mode is configured by executing:

ip link set dev lag0 down

ip link set dev ens1np0 nomaster

ip link set dev ens1np1 nomaster

ip link set dev lag0 type bond mode active-backup

ip link set dev lag0 type bond miimon 100

ip link set dev ens1np0 master lag0

ip link set dev ens1np1 master lag0

ip link set dev lag0 up

The miimon setting sets the interval on which the link state should be monitored in milliseconds. If a
port down state is detected the LAG will reconfigure itself to send the traffic out on one of the other ports
in the LAG.

27.2.2 Balance-xor

The balance-xor mode balances traffic across the aggregated ports using a hash method. To enable
offloading the xmit_hash_policy value must be set to either layer3+4 or encap3+4. Other hashing
methods will not be offloaded. Configuration is as follows:

ip link set dev lag0 down

ip link set dev ens1np0 nomaster

ip link set dev ens1np1 nomaster

ip link set dev lag0 type bond mode balance-xor

ip link set dev lag0 type bond miimon 100

To use layer3+4 as hash:

ip link set dev lag0 type bond xmit_hash_policy layer3+4

To use encap3+4 as hash:

ip link set dev lag0 type bond xmit_hash_policy encap3+4

Add back the lowerdevices and up the LAG:

ip link set dev ens1np0 master lag0

ip link set dev ens1np1 master lag0

ip link set dev lag0 up

www.corigine.com 86

For more detailed information on the difference between the modes and the hash methods it is recom
mended to read the Linux kernel documentation on the subject.

27.2.3 802.3ad

This mode is very similar to balance-xor, but it applies the LACP control plane on top. Everything
is configured similar to balance-xor mode, including picking the required xmit_hash_policy. The
only difference is when setting the bond mode. Configuration is as follows:

ip link set dev lag0 down

ip link set dev ens1np0 nomaster

ip link set dev ens1np1 nomaster

ip link set dev lag0 type bond mode 802.3ad

ip link set dev lag0 type bond miimon 100

To use layer3+4 as hash:

ip link set dev lag0 type bond xmit_hash_policy layer3+4

To use encap3+4 as hash:

ip link set dev lag0 type bond xmit_hash_policy encap3+4

Add back the lowerdevices and up the LAG:

ip link set dev ens1np0 master lag0

ip link set dev ens1np1 master lag0

ip link set dev lag0 up

Note that the control LACP traffic itself is not offloaded since it is very low volume and makes use of the
kernel logic for the control plane. However, the actual bond traffic is offloaded in this mode.

27.3 Configuring Linux Teaming

Another method of setting up link aggregated ports is to use Linux teaming. Teaming is controlled using
the teamd and teamdctl utilities, as will be demonstrated below.

Creating a new team device for activebackup mode:

teamd -t lag0 -d -c '{"runner": {"name": "activebackup"}}'

Creating a new team device for load balancing mode. The hashing method for teaming is not as well
defined so for offloading to the NFP this will hash on L3 and L4:

teamd -t lag0 -d -c '{"runner": {"name": "lacp"}}'

Ports are added using teamdctl:

www.corigine.com 87

https://www.kernel.org/doc/Documentation/networking/bonding.txt

teamdctl lag0 port add ens6np0

teamdctl lag0 port add ens6np1

The port config can be dumped using:

teamdctl lag0 config dump

Example output:

{

"device": "lag0",

"ports": {

"ens6np0": {

"link_watch": {

"name": "ethtool"

}

},

"ens6np1": {

"link_watch": {

"name": "ethtool"

}

}

},

"runner": {

"name": "lacp",

"tx_hash": [

"eth",

"ipv4",

"ipv6"

]

}

}

For more usage instructions using teaming take a look at the man pages for teamd and teamdctl.

27.4 Using Linux LAG with Open vSwitch

Once the LAG is configured as shown in section Configuring Linux Bond LAGs, it is possible to use it
with Open vSwitch by adding the LAG port to the bridge as with any other type of port. See the following
example which adds a bridge, configures the LAG port as well as a VF representor port and then adds
two simple flow rules that forwards all traffic between the VF and the LAG:

ovs-vsctl add-br br0

ovs-vsctl add-port br0 lag0

ovs-vsctl add-port br0 <vf0_repr>

ovs-ofctl add-flow br0 in_port=lag0,actions=output:<vf0_repr>

ovs-ofctl add-flow br0 in_port=<vf0_repr>,actions=output:lag0

Teams are used with Open vSwitch in exactly the same way as Linux bond LAGs.

www.corigine.com 88

27.5 Using Linux LAG with Tunnels

Minimum supported versions:

Kernel 5.2

Firmware AOTC2.10.A.23

OVS 2.11

RHEL 7 7.7

RHEL 8 8.0

Ubuntu 19.10

It is possible to configure tunnels to work in conjunction with Linux LAG ports as of kernel 5.2. The
simplest way to configure this is to make use of two OVS bridges. Add the tunnel port to the first bridge,
the LAG port to the second bridge and add the tunnel endpoint IP to the second bridge. Refer toMethod
2: IPontheBridge to see how this is configured.

The only difference is that instead of placing phy0 on br-ex the LAG port is placed on the bridge:

ovs-vsctl add-br br-ex

ovs-vsctl add-port br-ex lag0

The rest of the config stays the same.

www.corigine.com 89

28 Appendix L: QinQ

Minimum supported versions:

QinQ offload

Kernel 5.10

Firmware AOTC2.14.A.6

OVS 2.11

RHEL 7 Not Supported

RHEL 8 Not released yet

Ubuntu Not released yet

28.1 Configuring QinQ in OVS

OVS has support to configure QinQ, previously known as 802.1ad. Support to offload this has been
added from the versions above and later. There are two ways to configure this. The first is to use OVS
port types together with the NORMAL rule. Enable the feature:

ovs-vsctl set Open_vSwitch . other_config:vlan-limit=2

Next, configure the port with ovsvsctl to add a service tag (outer VLAN) for specific customer tags (inner
VLAN):

ovs-vsctl set port <phy0_repr> vlan_mode=dot1q-tunnel tag=2000 cvlans=100

As mentioned above, this only works when using actions=NORMAL. An alternative method is to use
OpenFlow rules to push and pop VLAN tags, similarly to how it would be done with just a single VLAN.

Note: It is still required to set vlanlimit=2, even if using OpenFlow rules directly.

Adding a VLAN tag can be achieved with the following command:

ovs-ofctl add-flow br0 \

in_port=<repr 1> actions=push_vlan:0x88a8,mod_vlan_vid=2000,output:<repr 2>

The above will push a tag with type 0x88a8, and vlan_id=2000 onto a packet. It is also possible to push
both an inner and outer VLAN tag in the same action:

www.corigine.com 90

ovs-ofctl add-flow br0 \

in_port=<repr 1>,actions=push_vlan:0x8100,mod_vlan_vid=200, \

push_vlan:0x88a8,mod_vlan_vid=2000,output:<repr 2>

This will push an inner tag of type 0x8100 and vlan_id 200, as well as an outer tag with type 0x88a8 and
vlan_id 2000. This is a slightly unusual use case, normally the traffic will already have an inner tag, and
just the outer tag needs to be pushed.

Removing a tag is quite easy:

ovs-ofctl add-flow br0 in_port=<repr 2>,actions=pop_vlan,output:<repr 1>

There is no way to specify which tag needs to be stripped, so the pop_vlan action will always remove
the most outer VLAN. Once again it is possible to remove both tags with a single rule, just chain the
pop_vlan actions:

ovs-ofctl add-flow br0 in_port=<repr 2>,actions=pop_vlan,pop_vlan,output:<repr 1>

Note: Only a maximum of two tags is supported for offloading. Another limitation is that while a single
VLAN tag on the outside of a tunnel header is supported for offloading, this is not supported with multiple
tags.

www.corigine.com 91

	Introduction
	Revision History
	About this Guide
	Audience
	Contact Us

	Abbreviations and Terms
	Product Overview
	Supported Products
	Safety
	Standards and Regulations
	Environmental Compliance
	Regulatory Compliance

	The Agilio SmartNIC Architecture
	Hardware Installation
	Physical installation
	Identification
	Validation

	Validating the Driver
	Confirm Upstreamed NFP Driver
	Confirm that the NFP Driver is Loaded

	Validating the Firmware
	Selecting the TC Offload Firmware
	Verify Firmware is Loaded

	SmartNIC Netdev Interfaces
	Representors
	Identification
	Support for biosdevname

	PF Link Configuration
	Settings
	RHEL 7.5+ and CentOS 7.5+
	Ubuntu
	Upping Physical Port Representors

	Verification

	Install Open vSwitch
	Installation From a Recent Distribution
	RHEL
	CentOS
	Ubuntu
	Check OVS Install

	Using the Linux Driver
	Configuring SR-IOV
	Configuring Interface Media Mode
	Configuring Interface Link-speed

	Configuring Interface Maximum Transmission Unit (MTU)
	Configuring FEC modes
	Setting Interface Breakout Mode
	Confirming Connectivity
	Allocating IP Addresses
	Pinging interfaces

	Basic Firmware Features
	Summary of Features
	Flow Based Features
	Flow Match Offload
	Flow Action Offload

	More Advanced Flows
	Tunnel Match Fields (General)
	Tunnel Set Fields (General)
	Tunnel Types
	Conntrack
	QoS - Metering
	Overlay Tunnel

	Configurations
	Bonding (Using Kernel Bonds)
	Bonding (Using OVS Bonds)
	Tunnel + Bonding
	Tunnel + VLAN
	Tunnel + VLAN + Bonding
	Two Different Tunnel Configurations
	Ingress QoS
	Metering
	OpenStack OVN + XVIO Support

	Other
	VFs
	Wildcard Flows
	Ethtool Offloads
	Max MTU
	Fallback Path for Unsupported Flows
	Port Breakout Nodes
	DPDK RTE Flow - Basic Flow Offload
	DPDK RTE Flow - VXLAN/GRE/GENEVE Tunnel Offload

	View Interface Parameters
	Configuring Interface Settings
	Receive Checksum Offload
	Transmit Checksum Offload
	Scatter/Gather
	TCP Segmentation Offload (TSO)
	Generic Segmentation Offload (GSO)
	Generic Receive Offload (GRO)

	Using Open vSwitch
	Running Open vSwitch
	RHEL and CentOS
	Ubuntu

	Configuring Open vSwitch Hardware Offload
	Open vSwitch Hardware Offload Example

	Using the DPDK Poll Mode Driver
	Install Software
	Install DPDK
	Environment Variable
	Install Pktgen-DPDK
	Install OVS-DPDK

	Configuration
	Select Flower Firmware
	Configure SR-IOV
	Configure Hugepages

	Example for OVS Hardware Offload
	Configure OVS-DPDK
	Configure Flow Rules
	Configure Pktgen-DPDK
	Check Flow Offload

	Using the DPDK vDPA
	Supported Products
	Software Dependency
	Software Installation
	Installing QEMU
	Installing DPDK
	Setting Environment Variable and Installing Pktgen-DPDK, OVS-DPDK, Firmware

	Software Configuration
	Configuration Sequence
	Loading Flower Firmware and Configuring SR-IOV, Hugepages, OVS-DPDK, Flow Rules
	Configuring vDPA Instance
	Configuring VM

	Configuration Examples
	Configuring the vDPA Instance
	Configuring the VM

	Appendix A: Corigine Repositories
	Importing GPG-Key
	Configuring Repositories

	Appendix B: Red Hat Repositories
	Appendix C: Installing the Out-of-Tree NFP Driver
	Install Driver via Corigine Repository
	RHEL 8 and CentOS 8
	Ubuntu
	Kernel Changes

	Building from Source
	RHEL 8 and CentOS 8 Dependencies
	Ubuntu Dependencies
	Clone, Build and Install

	Appendix D: Working with Board Support Package
	Install Software from Corigine Repository
	Install Software from DEB/RPM Package
	Obtain Software
	Install the Prerequisite Dependencies
	RHEL and CentOS Dependencies
	Ubuntu Dependencies

	NFP BSP Package

	Using BSP Tools
	Enable CPP Access
	Configure Media Settings
	CX 2x25GbE - AMDA0099
	CX 1x40GbE - AMDA0081
	CX 2x40GbE - AMDA0097

	Appendix E: Upgrading the Kernel
	RHEL
	CentOS
	Ubuntu
	Acquire packages
	Install packages

	Appendix F: Updating Kernel Boot Parameters
	RHEL and CentOS Grub Config
	Ubuntu Grub Config

	Appendix G: Upgrading TC Firmware
	Installing Updated TC Firmware via the Corigine Repository
	Installing Updated TC Firmware from Package Installations
	Select Updated TC Firmware

	Appendix H: Offloadable Flows
	Matches
	Actions

	Appendix I: Quality of Service
	Configuring Quality of Service (QoS) Rate Limiting with OVS

	Appendix J: Overlay Tunneling
	Introduction
	Method 1: IP-on-the-Port
	Method 2: IP-on-the-Bridge

	VXLAN Tunnels
	GENEVE Tunnels
	GRE Tunnels
	IPv6 on the Underlay

	Appendix K: Link Aggregation (LAG)
	Using Native Open vSwitch LAG
	Configuring Linux Bond LAGs
	Active-backup
	Balance-xor
	802.3ad

	Configuring Linux Teaming
	Using Linux LAG with Open vSwitch
	Using Linux LAG with Tunnels

	Appendix L: QinQ
	Configuring QinQ in OVS

